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1. Renormalization of the Electric Charge in QED - part II

In the last exercise we computed the matrix element iΠµν(q) corresponding to the
vacuum polarization diagram. The intermediate result was:

iΠµν(q) = −4ie2

∫

d4`

(2π)4

∫ 1

0

dx
1

2
gµν`2 + gµνx(1 − x)q2 + gµνm2

(`2 + ∆)2
(1)

Now, we will solve the integral and interprete the resulting correction of the photon
propagator as a renormalization of the electric charge.

(a) Prove that
∫

dΩ4 = 2π2

Hint: Multiply the known integrals
∫ +∞

−∞

d`ie
−`2

i =
√

π

for i = 0, . . . , 3 and change from Cartesian coordinates to 4-dim. spherical coor-
dinates d4` = |`|3 d|`|dΩ4. Then substitue z = |`|2 and solve the remaining
integral using partial integration.

(b) In Euclidean space we can now change eqn. (1) to polar coordinates. Perform
the substitution z = |`|2.

(c) Next, we want to solve the integrals over z. Therefore, perform the following
integrations:

∫ b

a

z2

(z + ∆)2
=

(

z − 2∆lnz − ∆2

z

)b+∆

a+∆

∫ b

a

z

(z + ∆)2
=

(

lnz +
∆

z

)b+∆

a+∆

Using the boundaries from 0 to +∞, we see that they are divergent. We regu-
larize them by a energy cutoff, i.e. we integrate from 0 to Λ2.

Note: z = |`|2 = |k + xq|2, so the momentum k in the loop only runs up to an
upper limit.
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(d) Verify that in the limit of large Λ the following approximations hold

∫ Λ2

0

z2

(z + ∆)2
dz → Λ2 − 2∆ ln

Λ2

∆
+ ∆,

∫ Λ2

0

z

(z + ∆)2
dz → ln

Λ2

∆
− 1

in order to obtain

iΠµν(q) = − ie2

4π2

∫ 1

0

dx

{

1

2
gµν

(

Λ2 − 2 ∆ ln
Λ2

∆
+ ∆

)

+

+gµν
[

x(1 − x) q2 + m2
]

(

ln
Λ2

∆
− 1

)}

.

(e) This result is not gauge invariant, because the cutoff regularisation does not
respect the QED symmetry. We can, however, restore the symmetry by discar-
ding all terms that are not proportional to q2. (The terms not proportional to q2

would give rise to a photon mass which is not allowed by the gauge symmetry.)

(f) We choose the cutoff to be extremly large (of the order of the GUT scale), so
we can assume that the cutoff is much larger than the external momentum q,
i.e. Λ2 � q2.

(g) Next, we consider two limits: (i) q2 small and (ii) q2 large.

i. q2 small - In this limit, we define the measurable value of the electric charge.

Use m2 � x(1 − x)q2 to prove the final result for the matrix element:

iΠµν(q) =
ie2

12π2
gµνq2 ln

m2

Λ2
.

We can now use this result to calculate the loop corrected photon propaga-
tor. Calculate the correction at one loop and follow that the propagator is
given by

− igµν

q2

[

1 +
e2

12π2
ln

m2

Λ2

]

.

Now calculate the correction to all orders (several one-loop diagrams one
after another). Using the geometric series

1

1 − x
= 1 + x + x2 + . . .

you will obtain

− igµν

q2

[

1

1 − e2

12π2 ln m2

Λ2

]

=: − igµν

q2
Z3.
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As every propagator ends in two vertices, we can also use our original pro-
pagator and multiply

√
Z3 to each vertex ieγµ (see 6.2) instead. Thus, we

can regard
√

Z3 as a factor multiplying the electromagnetic charge which
gives the renormalized charge or renormalized coupling constant:

eR :=
√

Z3 e

Note that it is the renormalized charge that is measured in experiments.
In order to distinguish the renormalized (physical) charge from the original
parameter e in the Lagrangian, we speak of e as the bare charge or bare
coupling constant.

ii. q large - In this limit, we can calculate the dependence of the charge e on
the momentum q.

First, write the logarithm as:

ln

(

Λ2

m2 − x(1 − x)q2

)

= −ln

(

− q2

Λ2

)

−ln (x(1 − x))−ln

(

1 − m2

q2x(1 − x)

)

The last term vanishes for q2 � m2. For the x-integration, you need (wi-
thout prove):

∫ 1

0

dx x(1 − x) ln(x(1 − x)) = − 5

18

Show that the final result for the matrix element reads:

iΠµν(q) =
ie2

12π2
gµνq2

(

ln

(

− q2

Λ2

)

− 5

3

)

.

Following the discussion of part (i) you find:

αR(q) =
α

1 − α
3π

(

ln
(

− q2

Λ2

)

− 5

3

)
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2. Dynkin Diagram of SO(2n) - part I

The orthogonal groups are given by matrices which satisfy AtA = 11.

(a) Using the correspondence between elements of the group and elements of the
Lie algebra, A = exp A ≈ 11 + A, show that the requirement is:

A + At = 0

Clearly these matrices have only off-diagonal elements. As a result, it would
be hard to find the Cartan subalgebra as we did for SU(n) by using diagonal
matrices. To avoid this problem, we perform a unitary transformation on the
matrices A.

(b) Use the ansatz
A = UBU †

with U unitary, define K = U tU to show that

B†KB = K.

Furthermore, expand B in the usual way B = exp B ≈ 11 + B and follow the
condition:

BtK + KB = 0 (2)

(c) A convenient choice for U in the case of SO(2n) is

U =
1√
2

(

i 11 −i 11

−1 11 −1 11

)

with 11 being the n × n identity matrix.

What is the form of K?

(d) We represent B in terms of n × n matrices Bi:

B =

(

B1 B2

B3 B4

)

Show that from eqn. (2) follows:

B1 = −Bt
4 B2 = −Bt

2 B3 = −Bt
3

A basis of 2n × 2n matrices fulfilling these conditions is given by (j, k ≤ n):

e1
jk = ej,k − ek+n,j+n

e2
jk = ej,k+n − ek,j+n j < k

e3
jk = ej+n,k − ek+n,j j < k

A basis for the Cartan subalgebra is given by hj = e1
jj.
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