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1. Geodesics of S?
On exercise sheet 3 (problem 2) we showed that the trajectories of a freely moving
particle in a gravitational field are the geodesics of the curved spacetime. Therefore

let’s compute the geodesics of S?!

a) Write the equations for geodesics of S? (equations of motion for a free particle
(a) q g q p

on a sphere of fixed radius R = 1):
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(Hint: On exercise sheet 3 (problem 3) we computed the non-vanishing Christof-

fel symbols for spherical coordinates:
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I,, = —rsin?0, T2, = —sinflcosh, Iy, = coth.)

(b) Let 8 = 6(¢) be the equation of the geodesic. Show that the two equations of

(1) lead to
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(c) Substitute f(#) = cot§ and write (2) as
d’f
192 +f=0. (3)

(d) What is the general solution of (3) in spherical coordinates? Show that the

solution can be rewritten in cartesian coordinates as
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where o and (3 are suitably chosen constants.

What form do the trajectories of a free particle on a sphere take?



2. Riemann Tensor
The Christoffel symbols are not tensors, and thus are not suitable to describe a curved
geometry in a coordinate-invariant way. The only tensor that can be constructed from

the metric and its first and second derivatives is the Riemann tensor
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Through self-contractions we get the Ricci tensor R, = R)‘,M,.i and the curvature

scalar R = g"" R ..

(a) Using the metric, the Riemann tensor can be made fully covariant (for details
see [Weinberg], p.141):
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Check the symmetry properties Ro,un = —Roprvs Ropvr = —Ruo v,
Ropvr = +Rurop, and Ropn + Rovny + Roaw = 0.

(b) Show that the number of independent components of the Riemann tensor R,
is SN?(N? —1) for N >4 and §N(N — 1)(N? — N + 2) otherwise. How many
independent curvature tensor components are there for N < 47

(c) Calculate the components of Rk, R and the curvature scalar R for a space
with coordinates (6, ¢) and metric g,,, = diag(a?, a®sin® ).

(Use again the Christoffel symbols from 1.(a)!)

3. Bianchi Identities

(a) In the previous problem we already proved the first Bianchi identities R ;5\ +
R ooz + Roaw = 0. Now verify the second Bianchi identities

RMW»W + RMW;H + Rkwn;v =0, (6)
where X, denotes the covariant derivative
0 . o -
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Use the fact that (6) is explicitly covariant and work in a locally inertial system

where the I's (but not their derivatives) vanish.
(b) Use (b) to contract the indices in (6) multiple times to arrive at
1
(R LRy, =0, )

What does this imply for energy-momentum conservation in General Relativity?

(Hint: Since exercise sheet 4 (problem 1.(i)) we always demand g,,.,.)



