General Relativity and Cosmology

Winter term 2008/09

Dr. S. Förste Example sheet 8

1. Useful relations

For any matrix A, the exponential e^A is defined by the power series

$$e^A = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$$

(a) Show that

$$\det e^A = e^{\operatorname{tr} A}$$

(b) Show that under variation $A \rightarrow A + \delta A$, the determinant of A varies as

$$\delta(\det A) = \det A \operatorname{tr}(A^{-1}\delta A)$$

(assume that A is invertible).

(c) Show that

$$\frac{\delta}{\delta g^{\mu\nu}} = -g_{\mu\rho} \, g_{\nu\lambda} \frac{\delta}{\delta g_{\rho\lambda}}$$

2. Physics in curved spacetime

(a) Consider the action for a scalar field ϕ in curved spacetime

$$S = -\int d^4x \sqrt{-g} \left(\frac{1}{2}(\partial\phi)^2 + V(\phi)\right)$$

where $(\partial \phi)^2 \equiv g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi$ (you will see this notation often!), and $V(\phi)$ is the potential energy for ϕ (e. g. $V(\phi) = \frac{1}{2}m^2\phi^2$). Derive the equation of motion for ϕ by varying the action with respect to the scalar field. How do things change if you consider the same action in *n*-dimensions, rather than 4?

- (b) Compute the energy momentum tensor for the scalar field, by varying the action above with respect to the metric.
- (c) Consider the Lagrange density for an electromagnetic field in curved space is given by

$$\mathcal{L} = -\frac{1}{4}\sqrt{-g}\,F^2$$

where $F^2 \equiv F^{\mu\nu}F_{\mu\nu}$ (again, you will encounter this notation often) and $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$. Derive the equation of motion for *F* by varying the action with respect to *A*, and the energy momentum tensor by varying it with respect to the metric.