String Theory Winter Term 2008/2009

Problem Sheet 6 Discussion: December 3, 14:00 in Hörsaal 118, AVZ

1. For two matrices A and B of dimension $M \times N$ and $P \times Q$, the Kronecker product $A \otimes B$ is a $MP \times NQ$ matrix with elements

$$(A \otimes B)_{im,jn} = A_{ij}B_{mn} \,.$$

The indices run over im = 11, 12, ..., NQ etc. For example, if A is a 2×2 matrix, the Kronecker product with B is

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix}$$

Clearly, it is linear and associative.

Check the following properties of the Kronecker product:

(a) Transpose and complex conjugation distribute over the Kronecker product, i.e.

$$(A \otimes B)^T = A^T \otimes B^T,$$
 $(A \otimes B)^* = A^* \otimes B^*.$

(b) If dimensions match, matrix multiplication factorises:

$$(A \otimes B) (C \otimes D) = (AC \otimes BD)$$

(c) If A and B are square matrices of dimensions $M \times M$ and $N \times N$, we have for the trace and determinant

$$\det(A \otimes B) = (\det A)^N (A \otimes B)^M , \qquad \operatorname{tr}(A \otimes B) = \operatorname{tr} A \cdot \operatorname{tr} B.$$

2. We can recursively define a particular representation of the Γ matrices for all dimensions in the following way: First we consider even dimensions. In D = 2, start with

$$\Gamma^0 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \Gamma^1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}.$$

Now assume the Γ matrices in D-2 dimensions to be γ^{μ} . In D dimensions, define

$$\Gamma^{\mu} = \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \otimes \gamma^{\mu}, \qquad \Gamma^{D-2} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \otimes \mathbb{1}, \qquad \Gamma^{D-1} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \otimes \mathbb{1}$$

For odd dimensions, D = 2k + 1, we take the 2k-dimensional Γ matrices and add Γ_* (see previous sheet).

- (a) Show that this procedure defines a set of Γ matrices in any dimension! What about the ambiguity in α ?
- (b) Show that, in any dimensions, Γ^0 and all odd Γ^i for $i \geq 3$ are antisymmetric, while Γ^1 and the even Γ^i are symmetric! Conclude that Γ^3 , Γ^5 ,..., Γ^9 are imaginary and the other ones are real.
- 3. Consider again a Majorana condition, i.e. a reality condition on a spinor of the form $\psi^* = B\psi$ (note the switch $B \to B^*$ relative to the previous sheet). As we saw, this requires

$$B\Sigma^{\mu\nu}B^{-1} = -\Sigma^{\mu\nu*}$$
 and $B^*B = 1$.

Show this if you didn't already.

Consider even dimensions first. Use the Γ matrix representation defined in the previous problem. Let

$$B = \Gamma^3 \Gamma^5 \cdots \Gamma^{D-1}, \qquad \qquad B' = \Gamma_* B.$$

Show that

$$B\Gamma^{\mu}B^{-1} = -(-1)^{D/2}\Gamma^{\mu*}, \qquad \qquad B'\Gamma^{\mu}B'^{-1} = (-1)^{D/2}\Gamma^{\mu*},$$

so both B and B' satisfy the first condition above. For which D do they also satisfy the second one?

Under which condition is the Majorana condition compatible with a chirality condition, $\Gamma_*\psi = \pm \psi$?

The definitions of B and B' also extend in D + 1 dimensions. Do they both generate consistent Majorana conditions? In which dimensions?

4. Argue that the Γ matrices can be chosen such that Γ^0 to be anti-Hermitean and the Γ^i are Hermitean! (All commonly used representations have this property, or the opposite one if the convention for the metric is different.)

If the representation is chosen such, show that $\Gamma^0\Gamma^{\mu}\Gamma^0 = \Gamma^{\mu\dagger}$. (Clearly, the $\Gamma^{\mu\dagger}$ satisfy the same algebra as the Γ^{μ} . This equation implies that both representations are equivalent, and Γ^0 is called an intertwiner.)

Show further that $\bar{\psi} = \psi^{\dagger} \Gamma^0$ transforms in the conjugate representation of the Lorentz group,

$$\bar{\psi} \longrightarrow \bar{\psi} \exp\{-i\omega_{\mu\nu}\Sigma^{\mu\nu}\}$$
,

so that $\bar{\psi}\psi$ is a Lorentz scalar.

In even dimensions, we can use the chiral projectors $P_{\pm} = \frac{1}{2} (1 \pm \Gamma_*)$ to form the chiral states $\psi_{\pm} = P_{\pm}\psi$. Show that a mass term $m\bar{\psi}\psi$ mixes ψ_{\pm} and ψ_{-} , while the kinetic term $i\bar{\psi}\Gamma^{\mu}\partial_{\mu}\psi$ does not!

5. Derive the massless particle spectrum of the closed string sector of type I string theory, i.e. start from type IIB and check the behaviour of the various fields under worldsheet parity reversal!