
String Theory
Winter Term 2008/2009

Problem Sheet 8
Discussion: January 14, 14:15 in Hörsaal 118, AVZ

1. Differential Forms

Totally antisymmetric lower-index tensors are an important class of tensors, called dif-
ferential forms. Given such a tensor Aµ1...µp

, antisymmetric in all its indices, the corre-
sponding p-form Ap is defined as

Ap =
1

p!
Aµ1...µp

dxµ1 ∧ dxµ2 ∧ · · ·dxµp .

Here the wedge product of the basis one-forms is antisymmetric, dxµ∧dxν = −dxν∧dxµ.
The wedge product extends to arbitrary forms,

Ap ∧ Bq =
1

p!

1

q!
Aµ1...µp

Bν1...νq
dxµ1 ∧ dxµ2 ∧ · · ·dxµp ∧ dxν1 ∧ dxµ2 ∧ · · ·dxνp

=
1

(p + q)!
(Ap ∧ Bq)µ1...µp+q

dxµ1 ∧ dxµ2 ∧ · · ·dxµp+q .

Hence the components of the product form are given by (the square brackets indicate
antisymmetrisation)

(Ap ∧ Bq)µ1...µp+q
=

(p + q)!

p!q!
A[µ1...µp

Bµp+1...µp+q] .

Clearly, the degree of a form cannot exceed the spacetime dimension.

One reason for the importance of forms is that they allow for a type of derivative which
does not require a connection, the exterior derivative d. It increases the degree of the
form and act as follows:

dAp = d

(

1

p!
Aµ1...µp

dxµ1 ∧ dxµ2 ∧ · · ·dxµp

)

=
1

p!
∂ρAµ1...µp

dxρ ∧ dxµ1 ∧ dxµ2 ∧ · · ·dxµp .

In other words, the components of the resulting (p + 1)-form are

(dAp)µ1...µp+1
= (p + 1) ∂[µ1

Aµ2...µp+1] .

(a) Verify that the result of the exterior derivative is indeed a tensor! Furthermore,
show that d2 = 0 and that the exterior derivative satisfies a Leibniz rule,

d (Ap ∧ Bq) = dAp ∧ Bq + (−1)p
Ap ∧ dBq .



(b) How many independent components does a p-form have in d spacetime dimensions?

Given a (Lorentzian) metric, we can assign to a p-form Ap a (d − p)-form (∗A)d−p

with components

(∗A)µ1...µd−p
=

1

p!

√
−g εµ1...µd

gµd−p+1ν1 . . . gµdνpAν1...νp

Here εµ1...µd
is the totally antisymmetric Levi-Civita symbol, ε012...d = 1, and g is

the determinant of the metric. Show that this is indeed a tensor! (It suffices to
show that

√
−gεµ1...µd

is a tensor, the so-called Levi-Civita tensor.) This operation
is called Hodge-∗. Compute the action of ∗∗!

(c) Specialise to three-dimensional Euclidean space. Consider a scalar function φ(x)
and a vector field ~u(x) and express the usual operations grad, curl and div in form
language. Derive the well-known identities

i. curl gradφ = 0,

ii. div curl ~u = 0,

iii. curl curl ~u = graddiv ~u − ∆~u.

iv. Let ~v be another vector field. Express the cross product ~u × ~v by forms.

2. (a) Show that the volume form V is V = ∗1. Show further that for two p-forms Ap

and Bp, we have A ∧ ∗B = B ∧ ∗A.

(b) Consider Stokes’ theorem
∫

V

dω =

∫

∂V

ω ,

where ω is a d-form and V is a d + 1-dimensional domain. What is the meaning of
this theorem for d = 0, 1, 2?

3. As is well known, electrodynamics is most naturally formulated in form language: The
gauge field is a one-form A1 with field strength F2 = dA1, the gauge transformation
being A1 → A1 + dΛ0. The Lagrangean is given by L = F2 ∧ ∗F2. Recall (or convince
yourself) that the resulting equation of motion is d ∗ F2 = 0.

Maxwell’s equations without sources are symmetric under exchange of electric and mag-
netic fields. How is this duality expressed in form language?

As an analogy, consider the theory of a free 2-form field B2 with action

S =

∫

dB ∧ ∗dB

(a) What is the gauge invariance of this theory?

(b) Show that this theory is dual to a theory of a free scalar field with action (ignoring
numerical prefactors)

Sdual =

∫

dφ ∧ ∗dφ .

Is there a remaining gauge symmetry?


