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–Class Exercises–

C1.1 The Dirac equation

Using the operator substitutions ~p → −i~O, E → i ∂t it is possible to get the equations
for quantum mechanics from the energy-momentum relations. From the non-relativistic
equation E = ~p2

2m
one obtains the Schrödinger equation.

(a) Obtain the Klein–Gordon equation from the relativistic energy-momentum relation
E2 = ~p2 + m2. Dirac’s basic idea was to “factorize” the Klein–Gordon equation to
obtain an equation which is first-order in the derivatives.

(b) Make the ansatz

Hψ = (αi p
i + βm)ψ . (1)

Squaring the Hamilton operator eq. (1) and using H2ψ = E2ψ should give the Klein–
Gordon equation. Show that from this requirement it follows:

β2 = α2
i = 1, {β, αi} = {αi, αj} = 0, i 6= j. (2)

(c) Why are the αi and the β not numbers? Why do they have to be hermitian (A = A†)?
What does it imply?

(d) Define the Dirac matrices γµ, µ = 0 . . . 3 by

γ0 = β, γi = β αi, i = 1, 2, 3. (3)

Show that the Dirac equation Hψ = Eψ can be written in the covariant form

(i γµ∂µ −m)ψ = 0. (4)

(e) Show that the gamma matrices fulfill the Clifford algebra

{γµ, γν} = 2ηµν 1, ηµν = diag (1,−1,−1,−1) . (5)

(f) Show the following relations:

(
γ0

)†
= γ0,

(
γk

)†
= −γk (6)

(
γ0

)2
= 1,

(
γk

)2
= −1, (γµ)† = γ0γµγ0 (7)
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The lowest dimensional matrices satisfying the Clifford algebra eq. (5) are 4 × 4 ma-
trices. The choice of the matrices is not unique. The following are two possible
representations: The Weyl (or chiral) representation

γ0 =

(
0 12×2

12×2 0

)
, αi =

( −σi 0
0 σi

)
, γi =

(
0 σi

−σi 0

)
, (8)

and the Dirac–Pauli representation

γ0 =

(
12×2 0

0 −12×2

)
, αi =

(
0 σi

σi 0

)
, γi =

(
0 σi

−σi 0

)
. (9)

Here σ1, σ2 and σ3 are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (10)

which satisfy the anti-commutation relation

{σi, σj} = 2δij 12×2 . (11)

(g) Verify that each set of matrices eqs. (8), (9) fulfills the Clifford algebra eq. (5).

C1.2 Free solutions of the Dirac equation

Since H is represented by a 4× 4 matrix, the ψ’s are 4-component objects called spinors :
ψ = (ψ1, ψ2, ψ3, ψ4)

T .

(a) Use the covariant form of the Dirac eq. (4) to show that for every ψα, α = 1 . . . 4:
(
¤ +m2

)
ψα = 0 . (12)

(b) For free particles it is possible to make the ansatz ψ = u(~p) e−i p·x. Plugging it into
eq. (1) and considering the Dirac–Pauli representation eq. (9) show that

Hu =

(
m12×2 ~σ · ~p
~σ · ~p −m12×2

)(
uA

uB

)
= E

(
uA

uB

)
, (13)

with u splitting into two 2-component spinors uA and uB.

(c) What are the energy eigenvalues for a particle at rest? Interpret the result.

(d) Now take ~p 6= 0. We will label the solutions by an index s. You can find two solutions by

choosing u
(s)
A = χ(s) with χ(1) = (0, 1)T and χ(2) = (1, 0)T . Which are the corresponding

uB? What can you say about the energy eigenvalues of these solutions? Proceed
analogously for the remaining two solutions.

(e) It is convenient to choose the covariant normalization
∫
ψ†ψ dV = 2|E|. Use this to

normalize the u(s)’s.

From the solutions we see that there are always two solutions per eigenvalue. Such
degeneracies are always due to additional symmetries.
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(f) Show that the operator

Σ · p̂ =
1

2

(
~σ · ~̂p 0

0 ~σ · ~̂p

)
, ~̂p =

~p

|~p| , (14)

corresponds to an observable, i. e. it commutes with H and P . The associated quantum
number is called helicity.
Choose ~p along the z axis. What are the helicities of the u(s)?

–Home Exercises–

H1.1 γ-Matrix identities 1.5+5+3.5=10 points

The following exercise is to be solved by only using the Clifford algebra of the γ-matrices
and not a particular representation. For convenience we introduce the notation

γ5 = i γ0γ1γ2γ3 . (15)

(a) Show that

(
γ5

)†
= γ5 ,

(
γ5

)2
= 1 ,

{
γ5, γµ

}
= 0 . (16)

(b) Prove the following trace theorems.

tr (γµγν) = 4ηµν (17)

tr (γµγνγργσ) = 4 (ηµνηρσ − ηµρηνσ + ηµσηνρ) (18)

tr (γµ1 . . . γµn) = 0 , for n odd (19)

tr γ5 = 0 (20)

tr
(
γµγνγ5

)
= 0 (21)

tr
(
γµγνγργσγ5

)
= −4iεµνρσ (22)

Hint: Use the cyclicity of the trace.

(c) Show the following contraction identities:

γµγµ = 4 · 1 (23)

γµγνγµ = −2γν (24)

γµγνγργµ = 4ηνρ 1 (25)

γµγνγργσγµ = −2γσγργν (26)

H1.2 The Lorentz group 1+2+3+3+1=10 points

The Lorentz group is defined as the set of transformations

xµ → Λµ
νx

ν (27)

which leave the scalar product 〈x, y〉 = ηµν x
µyν invariant.
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1. Show that an element λ of the Lie algebra of the Lorentz group satisfies:

λT = −ηλη . (28)

Hint: Reformulate the statement about the invariance of the scalar product in
ηµν = ηρσΛρ

µΛσ
ν and write an element of the Lorentz group as Λµ

ν = δµ
ν − iλµ

ν.

2. Choose

(Mµν)ρ
σ = i (ηµρδν

σ − ηνρδµ
σ) (29)

as a basis for the Lie algebra. What do these matrices look like? Describe the form
of the matrices in words. Verify the commutation relations

[Mµν ,Mρσ] = −i (ηµρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) . (30)

3. We split the generators into two groups:

J i =
1

2
εijkM jk , K i = M0i . (31)

The J ’s have only spatial indices, the K’s have spatial and timelike indices. Verify
the commutation relations

[
J i, J j

]
= i εijkJk ,

[
J i, Kj

]
= i εijkKk ,

[
K i, Kj

]
= −i εijkJk , (32)

and describe the meaning of each relation in words. What kind of transformations
do the J ’s and K’s correspond to?

4. The form of the commutation relations for the Lorentz algebra can still be simplified.
Define

T i
L/R =

1

2

(
J i ± iK i

)
(33)

and verify the commutation relations

[
T i

L, T
j
L

]
= i εijk T k

L ,
[
T i

R, T
j
R

]
= i εijk T k

R ,
[
T i

L, T
j
R

]
= 0 . (34)

5. Classify the representations of the Lorentz algebra using what you learned about
su(2).

Conclusion: Every representation of the Lorentz algebra can be characterized by
two non-negative integers or half-integers (jL, jR).
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