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H2.1 Representations of su(2) 1+1.5+1+1+1+1.5+0.5+1.5+2=11 points

A Lie algebra g is a real vector space together with a smooth mapping [·, ·] : g × g → g

satisfying the following conditions:

(i) The mapping is bilinear.

(ii) The mapping is skew-symmetric: [a, b] = −[b, a] for a, b ∈ g.

(iii) It fulfills the Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for a, b, c ∈ g.

A representation ρ of a Lie algebra g on a vector space V is a linear mapping ρ : g → End(V )
which is an algebra homomorphism, i. e. ρ([a, b]) = [ρ(a), ρ(b)]. The dimension of V is called
the dimension of the representation: dim(ρ) := dim(V ).

If there is a vector space {0} 6= W $ V such that ρ(W ) ⊂ W , the representation is
called reducible and W is called the invariant subspace. If such W does not exist the
representation is called irreducible; i. e. a representation is irreducible if and only if V is
the only invariant subspace itself. In this exercise we will focus on the algebra su(2).

(a) For G ∈ SU(2) we can write G = ei g with g ∈ su(2). The group SU(2) is the set of all
2-dimensional unitary matrices with determinant 1. Show that the corresponding Lie
algebra su(2) is the set of all traceless hermitian matrices.
Hint: det A = exp Tr log A.

(b) Choose the basis

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (1)

for the traceless hermitian matrices with the commutation relation [σi, σj] = 2iεijkσk

and define

J3 =
1

2
σ3, J+ =

1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2) . (2)

Verify the commutation relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3. (3)

In the following let us consider all irreducible, finite-dimensional representations
of su(2) on a vector space V , ρ(Ji) ∈ End(V ), i = 3, +,−. We will proceed stepwise
in order to classify these representations and to find out which dim(V ) are allowed.
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(c) Since J3 is diagonal, ρ(J3) can also be chosen to be diagonal. Therefore V can be
decomposed into eigenspaces of ρ(J3),

V =
⊕

Vα , (4)

where α labels the eigenvalues of ρ(J3), i. e.

(ρ(J3)) v = αv, v ∈ Vα , α ∈ C . (5)

Show that J+(v) ∈ Vα+1 and J−(v) ∈ Vα−1.

Hint: For convenience use shorthand Ji for ρ(Ji).

(d) Prove that all complex eigenvalues α which appear in the above decomposition differ
from one another by 1.

Hint: Choose an arbitrary α0 ∈ C from the decomposition and prove that
⊕

k∈Z Vα0+k ⊂ V
is indeed equal to V using the irreducibility of the representation.

(e) Argue that there is a k ∈ N for which Vα0+k 6= {0} and Vα0+k+1 = {0}. Define
n := α0 + k. Note that up to now we only know that n ∈ C. Draw a diagram. Write
the vector spaces Vn−2, Vn−1 and Vn in a row and indicate the action J3, J+ and J− on
these vector spaces by arrows. The eigenvalue n is called highest weight and a vector
v ∈ Vn is called highest weight vector. Why?

(f) Choose an arbitrary vector v ∈ Vn (highest weight vector). Prove that the vectors v,
J−v, J2

−v, . . . span V .

Hint: Show that the vector space spanned by these vectors is invariant under the action
of J3, J+ and J− and use the irreducibility of the representation.

(g) Argue that all eigenspaces Vα are 1-dimensional.

(h) Prove that n is a non-negative integer or half integer and that

V = V−n ⊗ . . .⊗ Vn . (6)

Complement the diagram drawn in part (e). Which is the dimension of the represen-
tation?

Hint: The representation is finite dimensional, so there exists m ∈ N for which
Jm−1
− v 6= 0 and Jm

− v = 0. Evaluate J+Jm
− v.

(i) Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible repre-
sentations of su(2):

V = V (2) ⊗ V (3) . (7)

Show that the resulting representation V is reducible and that it can be decomposed
into a 2-dim. and a 4-dim. irreducible representation. Shorthand: 2⊗ 3 = 2⊕ 4.

Hint: The action of a Lie algebra on the tensor product of two representations is given
by: X(v ⊗ w) = Xv ⊗ w + v ⊗ Xw, i. e. the eigenvalue of J3 on V is the sum of
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the eigenvalues of J3 on V (2) and V (3). Draw the diagrams of the eigenvalues(with
multiplicities). Then use the fact that the eigenspaces of irreducible representations
are 1-dimensional.

H2.2 Weyl spinors – Take I 1+1+1+2+1+2+1=9 points

As you have probably realized the Lorentz transformation on Minkowski space is given by

Λ = exp

(
− i

2
ωµν Mµν

)
. (8)

In exercise H 1.2 we have defined the Lorentz algebra through

[Mµν ,Mρσ] = −i (ηµρM νσ − ηµσM νρ − ηνρMµσ + ηνσMµρ) . (9)

Here we would like to investigate its representations. To make this point clear we write
D(Λ) instead of Λ.

(a) Using the notation of exercise H 1.2 we define α, β through ωij = εijkαk and βi = ω0i.
Show

D(Λ) = exp
(
−i

[
~α · ~J + ~β · ~K

])
, (10)

= exp
(
−i

[
~α− i~β

]
· ~TL

)
exp

(
−i

[
~α + i~β

]
· ~TR

)
. (11)

Note that T i
L, T i

R are still unspecified; we only know their algebra. For a particular
representation one has to make a choice!

(b) Specialize to a particular representation: choose the T i
L, T i

R to be the Pauli matrices.
The simplest representation of the Lorentz group are (1/2, 0) and (0, 1/2). An object
transforming in the (1/2, 0) is called a left-chiral Weyl spinor. The definition of a
right-handed Weyl spinor is analogous.
How many entries does a Weyl spinor have? Write down the transformation laws for
the two types of Weyl spinors.

(c) We want to rewrite the transformation laws for Weyl spinors under Lorentz transfor-
mations in the standard notation:

D(Λ) = exp

(
− i

2
ωµν Mµν

)
. (12)

Therefore, we generalize the Pauli matrices eq. (1) to

σµ :=
(
1, σi

)
, σµ :=

(
1,−σi

)
. (13)

Furthermore we define the following quantities:

σµν :=
i

4

(
σµ σν − σν σµ

)
, σµν :=

i

4

(
σµ σν − σν σµ

)
. (14)
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We denote the left-chiral Weyl spinor (1/2, 0) by ΨL and the right-chiral Weyl spinor
(0, 1/2) by ΨR. Let DL, DR denote the transformation matrices for the left- and
right-chiral Weyl spinors. Show that the Weyl spinors transform as

ΨL 7−→ exp

(
− i

2
ωµν σµν

)
ΨL , (15)

ΨR 7−→ exp

(
− i

2
ωµν σµν

)
ΨR (16)

Hint: Rewrite the K’s and J ’s using the definitions TL and TR from exercise sheet 1.
Express Mµν in terms of K’s and J ’s. Then identify the components of σµν and σµν

with the components of Mµν.

(d) Prove the following equations:

D−1
L = D†

R , (17)

σ2 DL σ2 = D∗
R , (18)

σ2 = (DL)T σ2 DL . (19)

Comparing the last equation to η = ΛT η Λ, we find that σ2 acts as a metric on the
space of the spinor components!

(e) Show that σ2Ψ
∗
L transforms in the (0, 1/2) representation and σ2Ψ

∗
R transforms in the

(1/2, 0) representation.

(f) Let ΨL, ΨR, ΦL and ΦR be Weyl spinors. Show that the following expressions are
invariant under Lorentz transformations:

i (ΦL)T σ2 ΨL , (20)

i (ΦR)T σ2 ΨR , (21)

Φ†
RΨL , (22)

Φ†
LΨR . (23)

(g) Choose ΦL = ΨL and compute i(ΨL)T σ2 ΨL.
What can you conclude about spinor components?
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