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H 2.1 Representations of su(2) 1+1.5+14+1+1+1.5+0.5+1.5+2=11 points

A Lie algebra g is a real vector space together with a smooth mapping [-,-] : g X g — g
satisfying the following conditions:

(i) The mapping is bilinear.
(ii) The mapping is skew-symmetric: [a,b] = —[b, a] for a,b € g.
(iii) It fulfills the Jacobi identity: [a, [b, ]| + [b, [c, a]] + [¢, [a, b]] = 0 for a,b,c € g.

A representation p of a Lie algebra g on a vector space V' is a linear mapping p : g — End (V)
which is an algebra homomorphism, i. e. p([a, b]) = [p(a), p(b)]. The dimension of V' is called
the dimension of the representation: dim(p) := dim(V).

If there is a vector space {0} # W & V such that p(W) C W, the representation is
called reducible and W is called the invariant subspace. If such W does not exist the
representation is called irreducible; i.e. a representation is irreducible if and only if Vis
the only invariant subspace itself. In this exercise we will focus on the algebra su(2).

(a) For G € SU(2) we can write G = !9 with g € su(2). The group SU(2) is the set of all
2-dimensional unitary matrices with determinant 1. Show that the corresponding Lie

algebra su(2) is the set of all traceless hermitian matrices.
Hint: det A = exp Trlog A.

(b) Choose the basis

(0 () (3 0) W

for the traceless hermitian matrices with the commutation relation [¢o?, 07| = 2i€*kg*
and define
1 1 . 1 .
J3:§O'3, J+:§(O'1+10'2), J,:§(O'1—10'2). (2)

Verify the commutation relations
[Js, Jo] = Jy, s, J-|=—J-, [Jq,J-] =2Js. (3)

In the following let us consider all irreducible, finite-dimensional representations
of su(2) on a vector space V, p(J;) € End(V), i = 3,+,—. We will proceed stepwise
in order to classify these representations and to find out which dim(V") are allowed.
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Since J3 is diagonal, p(.J3) can also be chosen to be diagonal. Therefore V' can be
decomposed into eigenspaces of p(J3),

V=@V., (4)

where « labels the eigenvalues of p(J3), i.e.
(p(J3)v=av, veV,, aecC. (5)

Show that J,(v) € Vo4q and J_(v) € V,_;.

Hint: For convenience use shorthand J; for p(J;).

Prove that all complex eigenvalues o which appear in the above decomposition differ
from one another by 1.

Hint: Choose an arbitrary ay € C from the decomposition and prove that @, .., Vag+x CV
is indeed equal to V' using the irreducibility of the representation.

Argue that there is a £k € N for which V., # {0} and V,,4k+1 = {0}. Define
n := ag + k. Note that up to now we only know that n € C. Draw a diagram. Write
the vector spaces V,,_o, V,,_1 and V,, in a row and indicate the action J3, J; and J_ on
these vector spaces by arrows. The eigenvalue n is called highest weight and a vector
v €V, is called highest weight vector. Why?

Choose an arbitrary vector v € V,, (highest weight vector). Prove that the vectors v,
J_v, J?v, ... span V.

Hint: Show that the vector space spanned by these vectors is invariant under the action
of Js, Jy+ and J_ and use the wrreducibility of the representation.

Argue that all eigenspaces V,, are 1-dimensional.

Prove that n is a non-negative integer or half integer and that
V=V,®...0V,. (6)

Complement the diagram drawn in part (e). Which is the dimension of the represen-
tation?

Hint:  The representation is finite dimensional, so there exists m € N for which
J" 1w #£0 and J"v = 0. Evaluate J,J™v.

Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible repre-
sentations of su(2):

V=v®gVv®, (7)

Show that the resulting representation V' is reducible and that it can be decomposed
into a 2-dim. and a 4-dim. irreducible representation. Shorthand: 2 ® 3 = 2 & 4.

Hint: The action of a Lie algebra on the tensor product of two representations is given
by: X(v@w) = Xv@w+v® Xw, i.e. the eigenvalue of J3 on V is the sum of
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the eigenvalues of Js on V® and VB . Draw the diagrams of the eigenvalues(with
multiplicities). Then use the fact that the eigenspaces of irreducible representations
are 1-dimensional.

H 2.2 Weyl spinors — Take 1 1+1+1+2+1+2+1=9 points

As you have probably realized the Lorentz transformation on Minkowski space is given by

A =exp (—%ww M’“’) : (8)
In exercise H 1.2 we have defined the Lorentz algebra through
(M, MP%) = =5 (1P MY — g MP — P MY 4 M92) )

Here we would like to investigate its representations. To make this point clear we write
D(A) instead of A.

(a) Using the notation of exercise H1.2 we define «, § through w;; = €304 and G; = wy;.
Show

D(A) = exp (—i [&-ﬂﬁ-ﬂ), (10)
= exp (—i [c? — 15] . T:L) exp (—i [d' + 15} . fR> . (11)

Note that T}, T} are still unspecified; we only know their algebra. For a particular
representation one has to make a choice!

(b) Specialize to a particular representation: choose the 77, Ti to be the Pauli matrices.
The simplest representation of the Lorentz group are (1/2,0) and (0,1/2). An object
transforming in the (1/2,0) is called a left-chiral Weyl spinor. The definition of a
right-handed Weyl spinor is analogous.

How many entries does a Weyl spinor have? Write down the transformation laws for
the two types of Weyl spinors.

(c) We want to rewrite the transformation laws for Weyl spinors under Lorentz transfor-
mations in the standard notation:

D(A) = exp (—%ww M“”) . (12)

Therefore, we generalize the Pauli matrices eq. (1) to
ot = (ﬂ,ai) , o= (]l, —ai) . (13)
Furthermore we define the following quantities:

ot = ;L(O'“ o’ —o’o"), T = i(ﬁ“ o’ -7 o"). (14)



We denote the left-chiral Weyl spinor (1/2,0) by W, and the right-chiral Weyl spinor
(0,1/2) by Wg. Let Dp, Dg denote the transformation matrices for the left- and
right-chiral Weyl spinors. Show that the Weyl spinors transform as

U, — exp <—% Wy J’“’) Uy, (15)

UR — exp <—% Wy E‘“’) Ugr (16)

Hint: Rewrite the K'’s and J’s using the definitions 11, and Tr from exercise sheet 1.
Ezxpress M™ in terms of K’s and J’s. Then identify the components of o** and "
with the components of M* .

Prove the following equations:

Dg' = Df, (17)
02 Doy = Dy, (18)
09 = (DL)T 09 DL . (19)

Comparing the last equation to n = ATn A, we find that o, acts as a metric on the
space of the spinor components!

Show that ooW} transforms in the (0,1/2) representation and oW} transforms in the
(1/2,0) representation.

Let Uy, Ur, &, and ®r be Weyl spinors. Show that the following expressions are
invariant under Lorentz transformations:

(@) 0y 0y, (20)
i (Pg)" 0o U, (21)
LWy, (22)
Iy (23)

Choose @, = ¥y, and compute i(Vp,) oy Uy,
What can you conclude about spinor components?



