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H3.1 Weyl spinors – Take II 1+1+0.5+1=3.5 points

(a) Show that the parity operator acts as follows on the generators of the Lorentz algebra:

J i 7−→ J i , Ki 7−→ −Ki . (1)

Hint: Use Mµν 7→ Λµ
ρΛν

σM
ρσ, where Λµ

ν is now the parity operator.

(b) Show that under parity transformations a representation (m, n) of the Lorentz algebra
goes to (n,m), e. g. parity maps (1/2, 0) to (0, 1/2). Therefore, if m 6= n, the parity
transformation maps an element of the vector space of the representation to an element
that is not part of the vector space.

(c) Show that the dimension of the representation (m,n) is (2m + 1) · (2n + 1).

(d) Show that the 4 dim. Minkowski space is the vector space of the (1/2, 1/2) represen-
tation.
Hint: Use the fact that parity maps a 4-vector to a 4-vector, i. e. you do not leave the
Minkowski space if you act with parity operator.

H3.2 Dirac spinors 1+1+1+1+1+1.5+1+0.5+2.5=10.5 points

Since the vector spaces of the left- and right-chiral Weyl spinors are not mapped to them-
selves under parity, we consider the following (reducible) representation of the Lorentz
algebra (1/2, 0) ⊕ (0, 1/2). In other words: we take a left-chiral Weyl spinor ΨL and
a right-chiral Weyl spinor ΦR and take them as the components of a new 4-component
spinor, called the Dirac spinor

Ψ =

(
ΨL

ΦR

)
. (2)

Note: We can write the Dirac spinor as two Weyl spinors in this easy way only when we
use the chiral representation of the Clifford algebra.

(a) Show that the Dirac spinor transforms under a Lorentz transformation as

Ψ 7−→ Ψ′ = DΨ = exp

(
− i

2
ωµνγ

µν

)
Ψ , (3)

with γµν := i
4
[γµ, γν ]. Here D denotes a representation of the proper Lorentz group

i. e. det Λ = +1 and Λ0
0 ≥ 1. This part of the full Lorentz group contains the identity

and can therefore be expressed by the exponential function.
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(b) Prove the following equation

[γµ, γνσ] = (M νσ)µ
ρ γρ . (4)

(c) Derive

D−1γµD = Λµ
νγ

ν . (5)

Hint: Use infinitesimal transformations D ≈ 1− i
2
ωµνγ

µν and Λµ
ν ≈ δµ

ν − i
2
ωρσ(Mρσ)µ

ν

as well as eq. (4).

(d) Show that in the chiral representation the chirality operator γ5 := iγ0γ1γ2γ3 can be
written as

γ5 =

( −1 0
0 1

)
. (6)

and prove that [γ5,D] = 0

(e) Show that the following operators are a complete set of projection operators
(i. e. P 2 = P , PLPR = 0, PL + PR = 1).

PL =
1

2

(
1− γ5

)
, PR =

1

2

(
1+ γ5

)
. (7)

what is their action on a Dirac spinor (in the chiral representation)?

(f) Show that

D† = γ0D−1γ0 , (8)

and from this that follows

Ψ̄ 7−→ Ψ̄D−1 , (9)

where Ψ̄ = Ψ†γ0.

(g) Consider the parity operator DP , i. e. (ΛP )0
0 = 1 and (ΛP )i

i = −1. Show that one
representation of the parity operator is

DP = γ0 . (10)

Hint: Use eq. (5).

(h) Examine the action of the parity operator eq. (10) on a Dirac spinor in the chiral
representation.

(i) Now we would like to analyze the list of five bilinear covariants. Check the covariance
and the behavior under parity:

scalar Ψ̄Ψ (11)

vector Ψ̄γµΨ (12)

tensor Ψ̄γµνΨ (13)

pseudo-scalar Ψ̄γ5Ψ (14)

pseudo-vector Ψ̄γ5γµΨ (15)
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H3.3 Non-Abelian gauge symmetry 1+1+1+2+1+1+2+1=10 points

(a) A Lie algebra is defined via the commutation relations of the algebra elements

[
T i, T j

]
= i f ijkT k . (16)

The f ijk are called structure constants. Show that the structure constants, viewed as
matrices (T i)kj := if ijk, furnish a representation of the algebra. This representation is
called the adjoint representation.
Hint: Use the Jacobi identity.

(b) Let us take a free Dirac field Lagrangian

L = Ψ̄ (iγµ∂µ) Ψ , (17)

with Ψ transforming under the global SU(N) as

Ψ 7−→ Ψ′ = UΨ , U = exp (i αa T a) , U †U = 1 . (18)

Show that L0 is invariant under this transformation.

(c) As a next step wee introduce local SU(N) transformations.

Ψ 7−→ Ψ′ = U(x)Ψ , U(x) = exp (i αa(x) T a) , U †(x)U(x) = 1 . (19)

Show that the transformation of L0 now leads to an extra term

Ψ̄ U †(x)iγµ (∂µU(x)) Ψ . (20)

Thus L0 is not invariant under local SU(N) transformations.

(d) Therefore, we want to gauge the symmetry : We introduce a (gauge) covariant deriva-
tive by minimal coupling to a gauge field and identify the gauge field’s transformation
properties. The covariant derivative is defined via the requirement that DµΨ trans-
forms in the same way as Ψ itself:

DµΨ :=
(
∂µ + igAa

µT
a
)
Ψ , (21)

demanding

DµΨ 7−→ (DµΨ)′ = U(x) (DµΨ) . (22)

Show that this is equivalent to demanding that the gauge boson transforms as

Aa
µ 7−→

(
Aa

µ

)′
= Aa

µ − fabcαbAc
µ −

1

g
∂µα

a . (23)

Hint: Expand the exponential at the appropriate place in the calculation.

(e) Show that the following Lagrangian is gauge invariant

L = Ψ̄ (iγµDµ) Ψ . (24)
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(f) Define the field strength tensor F through

i g
(
F a

µνT
a
)
Ψ := (DµDν −DνDµ) Ψ (25)

and find for his components

F a
µν = ∂µA

a
ν − ∂νA

a
µ − g fabcAb

µA
c
ν . (26)

(g) Note that the covariant derivative was constructed such that D′
µU(x) = U(x)Dµ holds.

Therefore

[(DµDν −DνDµ) Ψ]′ = U(x) (DµDν −DνDµ) Ψ (27)

is valid. Derive the transformation property of the field strength tensor

Fµν 7−→ (Fµν)
′ = U Fµν U−1 , (28)

F a
µν 7−→

(
F a

µν

)′
= F a

µν − fabcαbF c
µν , (29)

where Fµν = F a
µνT

a. Because of the last equation the field strength tensor itself is not
gauge invariant.

(h) Verify that the product

tr(FµνF
µν) (30)

is gauge invariant. The trace is taken over the matrix entries of the generators.

As this term is gauge invariant, we have to add it to the Lagrangian. It gives rise to self
couplings of the gauge bosons. The final result for the gauge invariant Dirac Lagrangian is

L = Ψ̄ (iγµDµ) Ψ− 1

2
tr (FµνF

µν) . (31)
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