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H4.1 The Standard Model Higgs effect 1+2+2+1.5+2+1.5+1+1 = 12 points

The Glashow–Weinberg–Salam theory is the part of the Standard Model (SM) of particle
physics which describes the electroweak interactions by a non-Abelian gauge theory with
the gauge group SU(2)L × U(1)Y . In one-family approximation, the SM has the following
particle content:

L =
(

νL

eL

)
R = eR Φ =

(
φ+

φ0

)
T aW a

µ Bµ

Hypercharge Y −1 −2 +1 0 0
SU(2)L rep. 2 1 2 3 1

Lorentz rep. (1/2, 0) (0, 1/2) (0, 0) (1/2, 1/2) (1/2, 1/2)

where L, R contain Dirac spinors and the superscripts in the Higgs doublet denote elec-
tromagnetic charges. The corresponding Lagrangian is given by

L =

kinetic energy terms of
leptons and interactions
with gauge bosons︷ ︸︸ ︷

R(iγµDµ)R + L(iγµDµ)L

kinetic energy terms of
the gauge bosons and
self-interactions︷ ︸︸ ︷

−1

4
F a

µνF
µν a − 1

4
GµνG

µν

+(DµΦ)†(DµΦ)− µ2Φ†Φ− λ(Φ†Φ)2

︸ ︷︷ ︸
Higgs field with potential

−Ge

(
LΦR + RΦ†L

)
︸ ︷︷ ︸

electron–Higgs Yukawa
coupling

, (1)

with

Dµ = ∂µ + ig′
Y

2
Bµ + igT aW a

µ , (2)

Gµν = ∂µBν − ∂νBµ , F a
µν = ∂µA

a
ν − ∂νA

a
µ + gεabcAb

µA
c
ν . (3)

(a) Write down how the covariant derivative eq. (2) acts on the left- and right-handed
leptons doublets and on the Higgs-doublet.

(b) Show that the Lagrangian eq. (1) is Lorentz invariant.

(c) Show that eq. (1) is gauge invariant as well.

(d) For the Higgs mechanism to work we need µ2 < 0. For which value of |Φ| does the
Higgs potential obtain a minimum? By an SU(2)L rotation we can choose the vacuum
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expectation value (VEV) of the Higgs field to be of the form 〈Φ〉 = 1√
2
(0, v)T . This

leads to a redefinition of the excitation modes of the Higgs fields,

Φ(x) = exp

{
i

v
ξa(x)T a

}(
0

1√
2
(v + η(x))

)
, (4)

with ξa(x) and η(x) being real fields. Now we apply an SU(2)L gauge transformation
such that the angular excitations ξa(x) vanish. This gauge transformation is called
unitary gauge. Show that the Higgs potential in the unitary gauge is given by

V (Φ) = −µ2η2(x) + λ v η3(x) +
λ

4
η4(x) . (5)

What is the mass of the η field? Compare the degrees of freedom (DOF) in the Higgs
sector to the situation before symmetry breakdown.

(e) Consider the kinetic energy terms of the Higgs field in eq. (1). Show that

(DµΦ)†(DµΦ) =
1

2
∂µη ∂µη +

1

4
g2 (v + η)2 W−

µ W+ µ

+
1

8
(v + η)2

(
W 3

µ Bµ

)(
g2 − g′g

−g′g g′ 2

)(
W 3 µ

Bµ

)
, (6)

with W±µ := 1√
2
(W 1 µ ∓ i W 2 µ).

(f) The masses of the gauge bosons are given by the terms that are quadratic in the fields,
e. g. 1

4
g2v2W−

µ W+ µ = m2
W W−

µ W+ µ, where mW = 1
2
vg. However, to see the masses of

W 3
µ and Bµ one has to diagonalize the matrix in eq. (6):

1

8

(
W 3

µ Bµ

)
OTO

(
g2 − g′g

−g′g g′ 2

)
OTO

(
W 3 µ

Bµ

)
=

(
Zµ Aµ

)(
m2

Z 0

0 m2
A

)(
Zµ

Aµ

)
. (7)

Determine this orthogonal matrix O by computing the corresponding eigenvalues and
eigenvectors. What are the masses of the Zµ and Aµ fields? Compare the DOF in
the gauge sector to the situation before the symmetry breakdown. What can you say
about the total amount of DOF?

(g) As you know, an orthogonal 2× 2 matrix can be written as

O =

(
cos θW − sin θW

sin θW cos θW

)
. (8)

Write cos θW in terms of g′ and g. Show for the ratio of the W - and Z-boson masses
mW

mZ

= cos θW . (9)

The angle θW is sometimes called Weinberg angle or weak mixing angle.

(h) Finally, consider the covariant derivative eq. (2). Substitute the fields Bµ and W a
µ by

W±
µ , Zµ and Aµ and show

Dµ = ∂µ + i Aµ eQ + iZµ
1√

g′ 2 + g2

(
g2T3 − g′ 2

Y

2

)
+

ig√
2

(
0 W+

µ

W−
µ 0

)
, (10)

where we have defined the electric charge e = g′g√
g′ 2+g2

and Q := T3 + Y
2
.
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H4.2 Electron–Tauon scattering 0.5+1+1+1+1+2.5+1 = 8 points

u(p1)

u(p2)

u(p3)

u(p4)

γ

p1

e
−

p2

τ
−

p3

e
−

p4

τ
−

q = p1 − p3

= p4 − p2

Vertices
µ

ieγµ (F1)

Fermions
q

i 6 q+m

q2−m2 (F2)

Photons

q

−iηµν

q2 (F3)

dσ(AB→AB)
dΩ

= 1
64π2m2

B

|M|2 (F4)

In perturbative quantum field theory Feynman Graphs are used to calculate amplitudes
of interacting processes and thus to give formulæ for cross-sections and decay widths.
A Feynman graph contains vertices at which particles are destroyed and created, prop-
agators connecting those vertices, and external lines describing in- and out-going particles.

We present the Feynman rules to calculate the amplitude −iM in QED.

(i) An arrow in the direction of time denotes a particle, an arrow in the opposite direction denotes an
antiparticle. Assign a label i to each external particle. Assign momenta to each particle (including the
internal lines) and indicate them by momentum-arrows beside the particle lines.

(ii) For the following rules, proceed “backwards” with respect to the particle arrow for each fermion line.
I.e. for a particle, proceeding backwards means “opposite to the direction of time”. For an antiparticle,
proceeding backwards means “in the direction of time”.

(iii) Write a factor u(pi) (v(pi)) for every external (anti-)particle line which arrow points towards a vertex and
u(pi) (v(pi)) for lines that point away from the vertex.

(iv) The contribution from vertices and internal lines (propagators) is summarized in eqs. (F1)–(F3). The
indices of the γ’s are contracted with the ηµν of the photon proparator.

(v) Use 4-momentum conservation at the vertices to eliminate the internal momenta.

In the lab frame where the particle B is initially at rest and is assumed to be such heavy that recoil effects are
negligible, the differential cross section for the process AB → AB is given by eq. (F4).

(a) Using the Feynman rules for QED, derive the electron-tauon scattering amplitude:

M = − e2

(p1 − p3)
2

[
u(p3)γ

µu(p1)
][

u(p4)γµu(p2)
]
. (11)

(b) To calculate the cross section, we need to know |M|2. Show that

|M|2 =
e4

(p1 − p3)
4

[
u(p3)γ

µu(p1)u(p1)γ
νu(p3)

][
u(p4)γµu(p2)u(p2)γνu(p4)

]
. (12)
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(c) In a typical experiment, the particle beam is unpolarized and the detector simply
counts the number of particles scattered in a given direction. Therefore, we have to
average over initial spins and sum over final spins. The averaging over the initial spins
is easy: It contributes a factor of 1/2 for each sum. Using the completeness relation for
Dirac spinors

∑
s=1,2 u(s)(p)u(s)(p) = ¢p+m, where ¢p = pµγ

µ, show that the summation
over spins for the first factor in eq. (12) can be written as

∑
s1,s3

u(s3)(p3)γ
µu(s1)(p1)u

(s1)(p1)γ
νu(s3)(p3) = tr

[
(¢p3 + me) γµ (¢p1 + me) γν

]
. (13)

Derive the analogous result for the second factor in (12). The final result reads

1

4

∑
s1, s2
s3, s4

|M|2 = e4
tr

[
(¢p3 + me) γµ (¢p1 + me) γν

]
tr

[
(¢p4 + mτ ) γµ (¢p2 + mτ ) γν

]

4 (p1 − p3)
4 . (14)

Note that we have reduced the problem of calculating the cross section to matrix
multiplication and taking the trace.

(d) Consider the first trace in eq. (14). Using the identities proved in H1.1, derive

tr
[
(¢p3 + m) γµ (¢p1 + m) γν

]
= 4

(
pµ

1p
ν
3 + pν

1p
µ
3 − (p1 · p3)η

µν + m2
eη

µν
)

, (15)

and similarly for the second trace.

(e) Substitute your results in eq. (14), expand the brackets and contract the indices to
show that

〈|M|2〉 = 8e4 (p1 ·p2) (p3 ·p4) + (p1 ·p4) (p3 ·p2)− (p1 ·p3) m2
τ − (p2 ·p4) m2

e + 2m2
τm

2
e

(p1 − p3)
4 . (16)

(f) So far everything is written covariantly and is independent of the special coordinate
frame. To make contact with measurements, we specify to the rest frame of the tauon
and make the approximation mτ À me. Denote by p := |~p1| the absolute value of the
initial electron momentum. Denote by θ the angle between ~p1 and ~p3.
Draw 2 diagrams, one before the scattering process and one after. Write the 4-momenta
under the respective diagrams, taking into account the approximation we have made.
Show that in this approximation conservation of energy/momentum gives |~p3| = |~p1| = p.
Prove the following identities.

(p1 − p3)
2 = −4p2 sin2 θ

2
, p1 · p3 = m2

e + 2p2 sin2 θ

2
, (17)

(p1 ·p2) (p3 ·p4) = E2m2
τ , p2 · p4 = m2

τ . (18)

(g) Insert the above results into eq. (F4) for the cross section to obtain the Mott formula

dσ

dΩ
=

1

64π2

e4

p4 sin4 θ/2

[
m2

e + p2 cos2 θ/2
]
. (19)

In the low-energy limit this leads to the well-known Rutherford formula.
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