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H7.1 Representations of SU(N) 1+1+1+1+5.5=9.5 points

(a) Recall the definition of the adjoint ad a(b) := [a, b].
Show that the adjoint is a representation of the Lie algebra

ad
(
[a, b]

)
= [ad a, ad b] , for a, b ∈ g . (1)

PLEASE NOTE!

♠ The bracket [· , ·] on the left-hand side denotes the abstract Lie-bracket, but on the
right-hand side it denotes the commutator.

♠ The adjoint representation ad of a Lie algebra g on a vector space V is a linear
mapping ad : g → End(V ), where V is equal to the Lie algebra itself, i .e. V = g

This means that when we computed the Dynkin diagram of SU(N), we implicitly
used the adjoint representation of SU(N):

ad h(eab) = [h, eab] . (2)

Furthermore, we had the eigenvalue equation

ad h(eab) = αeab
(h) eab , (3)

which defined the roots αeab
.

This eigenvalue equation can now be generalized to non-adjoint representations ρ on
some vector space V . Let φi be a basis of V . We denote the representations of the
elements of the Cartan subalgebra h ∈ H by ρ(h) and the representations of the
step operators eα by ρ(eα). Then eq. (3) reads: ρ(h) φi = M i(h) φi. Since the linear
functions M i act on elements h ∈ H and give (real) numbers, they are elements of
the dual space H∗. They are called weights. The corresponding vectors φi are called
weight vectors. Note that roots are the weights of the adjoint representation!
You may have already gotten that simple roots αj span H∗, so it is possible to
reexpress the weights by simple roots M i =

∑
j cijαj, where the coefficients cij are

in general are in general non-integers. A weights M i is called positive, if the first
non-zero coefficients is positive. We write M i > M j, if M i −M j > 0.
A weight is called the highest weight, denoted by Λ, if Λ > M i ∀M i 6= Λ

(b) Suppose that φi is a weight vector with weight M i. Show that ρ(eα)φi is a weight
vector with weight M i + α unless ρ(eα)φi = 0.
Hint Use eqs. (2) and (3) and the fact that ρ is a representation. Thus it makes sense
to think of the ρ(eα) as raising operators and the ρ(e−α) as lowering operators.
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(c) Consider now a representation ρ of SU(N). We denote the generators ρ(ta). For
elements of the Cartan subalgebra, we may also write ρ(h). Follow from

[ρ(ta), ρ(tb)] = i fabc ρ(tc) , (4)

that −ρ(ta)
∗ forms a representation, called the complex conjugate of ρ. We denote it

by ρ. ρ is said to be a real representation if it is equivalent to its complex conjugate.

(d) Show that if M i is a weight in ρ, −M i is a weight in ρ.
Hint: Use the fact that Cartan generators are hermitean and the definitions on the
previous exercise sheet.

Now we are well equipped to construct the representations. For a finite dimensional rep-
resentation we will find a state with highest weight Λ, which is annihilated by all positive
root operators. Then we can get all states by acting with the lowering operators on it. In
order to do this, we present the weights by the Dynkin labels

mi :=
2〈M,αi〉
〈αi, αi〉 . (5)

where M denotes a weight. The dynkin labels always consist of integer numbers which for
a highest weight state are non-negative. It is easy to see that acting with E−αi

corresponds
to substracting the ith row of the Cartan matrix from the Dynkin label. Now you can
construct all irreducible representations via the following procedure:

X start with the Dynkin label m with non-negative entries, representing the highest weight state
X if the ith entry of the Dynkin label mi is positive, you can get mi new states by substracting mi

times the ith row of the Cartan matrix
X repeat the last step for all new steps, for i = 1 . . . r
X at the end you should arrive at the lowest weight state with only non-positive entries in the Dynkin

label.

(e) Construct the 5 and the 10 of su(5) with the highest Dynkin labels (1, 0, 0, 0) and
(0, 1, 0, 0). What are the higest Dynkin labels of the 5 and the 10? Also, construct
the adjoint, the 24, from the Dynkin label (1, 0, 0, 1). How can you see that it is real?
For an example hit the figure below.

H7.2 Group-theoretical GUT breaking 1+1+1.5+1.5=6 points

α1 α2 α3 α4

Dynkin Diagram of su(5).

(1, 0)

α1 = (2,−1)

(−1, 1)

α2 = (−1, 2)

(0,−1)
Highest weight construction.

of the 3 of su(3).

We believe that the SM gauge group unifies to one simple
Lie algebra (e. g. su(5)) which is broken at very high energies
O(1016 GeV). Representations os such Great Unified Theory
(GUT) group decompose into those of the SM gauge group.
Hence, tools for this group-theoretical symmetry breaking
have to be applied.

Dynkin’s Symmetry Breaking: To each simple root one as-
signs an integer number, called the Kac̆-label ai. They are
given as the coefficients of the decomposition of the highest
root in the basis of simple roots. Deleting any node with
Kac-label ai = 1 from the Dynkin diagram gives a maximal
regular subalgebra times a U(1) factor.
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(a) In the case of SU(5), all Kac̆-labels are 1. Apply Dynkin’s rule to find the symmetry
breaking yielding the SM gauge group, i. e.

SU(5) → SU(3)× SU(2)× U(1) . (6)

The U(1) generator is constructed as a Cartan element of SU(5) such that it is
annihilated by all roots of SU(3) × SU(2). Show that Q = diag(−2,−2,−2, 3, 3)
fulfills these conditions.

(b) The 5 is a reducible representation of the subgroup SU(3)×SU(2)×U(1). Let α1 and
α2 correspond to SU(3) and α4 to SU(2). Thus, every weight λ of SU(5) decomposes
as

λ = (λ1, λ2, λ3, λ4) → (λ1, λ2|λ4) = (µ|ν). (7)

First, write down all weights (µ|ν), then find the highest weight µ and determine
all weights and the dimension of the corresponding representation. Consider now
the values of ν belonging to this µ-representation and state the dimension of the
ν-representation! Repeat these steps starting with the highest weight ν. Finally,
determine the U(1) charge by applying the U(1) generator to the weight vectors.
The result reads

5 → (3,1)−2 ⊕ (1,2)3. (8)

(c) Repeat the analysis for the representation 10 and verify

10 → (1,1)6 ⊕ (3,1)−4 ⊕ (3,2)1. (9)

Hint: All weights which appear in the calculation have multiplicity 1.

(d) Perform the breaking for the representation corresponding to the highest weight with
Dynkin coefficients (1, 0, 0, 1), i. e. the adjoint 24. The result reads

24 → (8,1)0 ⊕ (1,3)0 ⊕ (1,1)0 ⊕ (3,2)5 ⊕ (3,2)−5. (10)

Identify the gauge group of the standard model.

Hint: All weights which appear in the calculation have multiplicity 1, except for
(0, 0, 0, 0) in 24 of SU(5) with multiplicity 4 and (0, 0) in 8 of SU(3) with multiplicity
2. What is the origin of this?

After a renormalization of the U(1) generator to Q′ = 1
6
Q we recover one family of the

standard model in 5⊕ 10.

H7.3 Dynamical GUT breaking 1.5+1+1+1=4.5 points

It is necessary to generalize the Higgs mechanism of the SM to understand the symmetry
breaking of any GUT theory to the SM. Thus, we describe the Higgs mechanism for a field
H in an arbitrary representation ρ of a semi-simple Lie algebra g.
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(a) Consider a complex scalar H in the representation ρ of a gauge group G. Assume
further that H acquires a vev 〈H〉 due to some potential. Deduce from the kinetic
term1

(DµH)∗ (DµH)|1 =
(
∂µH + igρ(T a)Aa

µH
)∗ (

∂µH + igρ(T b)AbµH
)∣∣

1
, (11)

that a gauge boson Aa
µ is massless, if ρ(T a) 〈H〉 = 0. Then, T a belongs to the

unbroken gauge group G ′.
Specialize to H in the adjoint representation with the kinetic term Tr(DµH)†(DµH)
and deduce

T a ∈ G ′ if [T a, 〈H〉] = 0, T a /∈ G ′ if [T a, 〈H〉] 6= 0. (12)

Let us apply this for the desired symmetry breaking by introducing a Higgs field in
the adjoint of SU(5), i. e. a 5× 5 hermitian traceless matrix.2 We work with a scalar
potential invariant under H → −H of the form

V (H) = −m2Tr
(
H2

)
+ λ1

(
Tr

(
H2

))2
+ λ2Tr

(
H4

)
. (13)

(b) First, use the previous results to argue that a Higgs field H precisely in the adjoint 24
is an appropriate choice to break SU(5) to the SM. Which component of 24 should
develope the VEV? (cf. exercise H 7.2 (d)) Use the gauge symmetry H → H ′ = UHU †

to obtain

H = diag(h1, h2, h3, h4, h5) (14)

and check that the minimum of the potential is given by the same equation ∀hi:

4λ2h
3
i + 4λ1ahi − 2m2hi − µ = 0 with a =

∑
j

h2
j , ∀i = 1, . . . , 5. (15)

Here µ is a Lagrange multiplier necessary to impose the constraint
∑

i hi = 0.

The cubic equation (15) has at most three roots denoted by φ1, φ2, φ3. Thus, there
are at most three different eigenvalues hi ∈ {φ1, φ2, φ3}. Let ni be the multiplicity of
the eigenvalue φi, i = 1, 2, 3, in 〈H〉:

〈H〉 := diag(φi1 , . . . , φi5) with n1φ1 + n2φ2 + n3φ3 = 0. (16)

(c) Following part (a), what is the most general symmetry breaking of SU(5)? What
happens to the rank of the gauge group? Consider also possible U(1) factors. De-
pending on the relative magnitude of the parameters λ1 and λ2, the combinations
(3, 2, 0) or (4, 1, 0) for (n1, n2, n3) minimize the potential. Thus,

case1: SU(5) → SU(3)× SU(2)× U(1) , case2: SU(5) → SU(4)× U(1) , (17)

which gives restrictions on phenomenologically reasonable values of λ1, λ2.

(d) Focus on the first case and determine what is the most general form of 〈H〉. Then,
the breaking eq. (17) should be obvious. What is the generator of the U(1)? Compare
this to your result for Q in exercise H 7.2 (a).

1The only restriction on ρ is that ρ⊗ρ should contain 1 in order to give rise to a gauge invariant kinetic
term for H. The subscript |1 denotes this singlet component. For the adjoint, it is obtained by the trace.

2Note that this is not the SM-Higgs field, which is contained in the 5.
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