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H8.1 Renormalization of the Electric Charge in QED

1+1+1+1+1.5+0.5+1+2+1+1+1+1.5+1+0.5+4 = 19 points

We calculate loop corrections to the photon propagator in QED due to the vacuum polar-
ization diagram. We will see that the correction can be interpreted as a renormalization
effect on the electric charge, the QED coupling constant. The vacuum polarization diagram
is given by the (amputated) Feynman diagram given in fig. 1

(a) Write down the matrix element iΠµν for this process. Use the QED Feynman rules
from Ex. 4.2 plus the additional Feynman rules tab. 1 . You will find

iΠµν(q) = −e2

∫

d4k

(2π)4
tr

(

γµ 6k + m

k2 − m2 + iǫ
γν 6k+ 6q + m

(k + q)2 − m2 + iǫ

)

. (1)

Hint: The trace comes from the contraction of the spinor indices of the γ-matrices.

(b) Use the trace theorems for γ-matrices to simplify the numerator of eqn. (1).

(c) Prove the so-called Feynman trick:

1

ab
=

1
∫

0

dx
1

[xa + (1 − x)b]2
. (2)

(d) Use the Feynman trick to combine the two denominators of eqn. (1). The result reads

1
∫

0

dx
1

[l2 + x(1 − x)q2 − m2 + iǫ]2
, (3)

where l = k + xq.

(e) Shift the integration variable from an integration over k to an integration over l and
argue that you can drop all terms linear in l. The result is:

iΠµν(q) = −4e2

∫

d4l

(2π)4

1
∫

0

dx
2lµlν + 2x(x − 1)qµqν − gµνl2 − gµν(x(x − 1)q2 − m2)

(l2 − ∆ + iǫ)2
,

(4)

where ∆ = m2 − x(1 − x)q2.
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Figure 1: Vacuum Polarization Feynman Graph

Feynman Propagator of Fermions with Momentum q i 6 q+m

q2−m2+iǫ

Loop momentum k
∫

d4k
(2π)4

Fermion loop ·(−1)

Table 1: QED Feynman rules II

(f) In QED one can prove that, due to the gauge symmetry, all terms proportional to qµ

or qν vanish in every S-matrix calculation. Drop the corresponding term from your
result. (The proof makes use of the so-called Ward Identity of QED.)

(g) Show that

∫

d4l

(2π)4

lµlν

f(l2)
=

1

4

∫

d4l

(2π)4
gµν l2

f(l2)
. (5)

(h) Recall that l2 = (l0)2−(li)2. Therefore, the integral of eqn. (4) is one over a Minkowski
space. It is much more convenient to perform such integrals in 4-dim Euclidean space.
To do so, one has to perform a Wick rotation:

(i) View l0 as a complex variable. Draw the complex l0-plane. The integration is
along the real axis. Mark the position of the poles of eqn. (4).

(ii) Use Cauchy’s integral theorem to argue that the integral from −∞ to +∞ is
equal to the integral from −i∞ to +i∞.

(iii) So define new (Euclidean) coordinates: l0 = in0 and li = ni and rewrite the
integral n terms of nµ. At the end, rename nµ to lµ.

(iv) Now we can set ǫ → 0, because there is no divergence on the path of integration.

The result should read:

iΠµν(q) = −4ie2gµν

∫

d4l

(2π)4

1
∫

0

dx
1
2
l2 + x(1 − x)q2 + m2

(l2 − ∆)2
, (6)

Now we will solve the integral and interpret the resulting correction of the photon
propagator as a renormalization of the electric charge.
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(i) Prove that
∫

dΩ4 = 2π2. Hint: Multiply the known integrals
∫ ∞

−∞
dlie

−l2
i =

√
π for

i = 0, ..., 3 and change from Cartesian coordinates to 4-dim. spherical coordinates

d4l = |l|3d|l|dΩ4. Then substitute z = |l|2 and solve the remaining integral using

partial integration.

(j) In Euclidean space we can now change eqn. (6) to polar coordinates. Perform the
substitution z = |l|2.

(k) Next, we want to solve the integrals over z. Therefore, perform the following integra-
tions:

∫ b

a

z2 dz

(z + ∆)2
=

(

z − 2∆ log z − ∆2

z

)b+∆

a+∆

,

∫ b

a

z dz

(z + ∆)2
=

(

log z +
∆

z

)b+∆

a+∆

.

(7)

Using the boundaries from 0 to +∞, we see that they are divergent. We regularize
them by an energy cutoff, i.e. we integrate from 0 to Λ2. Note: z = |l|2 = |k + xq|2, so
the momentum k in the loop only runs up to an upper limit.

(l) Verify that in the limit of large Λ the following approximations hold

∫ Λ2

0

z2

(z + ∆)2
dz → Λ2 − 2∆ log

Λ2

∆
+ ∆ ,

∫ Λ2

0

z

(z + ∆)2
dz → log

Λ2

∆
− 1 (8)

in order to obtain

iΠµν(q) = − ie2

4π2
gµν

∫ 1

0

dx

{

1

2

(

Λ2 − 2∆ log
Λ2

∆
+ ∆

)

+ [x(1 − x)q2 + m2]

(

log
Λ2

∆
− 1

)}

.

(9)

(m) This result is not gauge invariant, because the cutoff regularization does not respect
the QED symmetry. Restore the symmetry by discarding all terms that are not pro-
portional to q2. (The terms not proportional to q2 would give rise to a photon mass
which is not allowed by the gauge symmetry.)

(n) Choose the cutoff to be extremely large (of the order of the GUT scale), so we can
assume that the cutoff is much larger than the external momentum q, i.e. Λ2 ≫ q2.

(o) Next, we consider two limits: (i) q2 small and (ii) q2 large.

(i) q2 small – In this limit, we define the measurable value of the electric charge. Use
m2 ≫ x(1 − x)q2 to prove the final result for the matrix element:

iΠµν(q) =
ie2

12π2
gµνq2 log

m2

Λ2
. (10)

3



We can now use this result to calculate the loop corrected photon propagator.
Calculate the correction at one loop and follow that the propagator is given by

− igµν

q2

[

1 +
e2

12π2
log

m2

Λ2

]

. (11)

Now calculate the correction to all orders (several one-loop diagrams one after
another). Using the geometric series

1

1 − x
= 1 + x + x2 + ... (12)

you will obtain

− igµν

q2

[

1

1 − e2

12π2 log m2

Λ2

]

=: − igµν

q2
Z3. (13)

As every propagator ends in two vertices, we can also use our original propagator
and multiply

√
Z3 to each vertex ieγµ instead. Thus, we can regard

√
Z3 as a

factor multiplying the electromagnetic charge which gives the renormalized charge

or renormalized coupling constant : eR :=
√

Z3e. Note that it is the renormalized
charge that is measured in experiments. In order to distinguish the renormalized
(physical) charge from the original parameter e in the Lagrangian, we speak of e

as the bare charge or bare coupling constant.

(ii) q large – In this limit, we can calculate the dependence of the charge e on the
momentum q. First, write the logarithm as:

log

(

Λ2

m2 − x(1 − x)q2

)

= − log

(

− q2

Λ2

)

− log(x(1 − x)) − log

(

1 − m2

q2x(1 − x)

)

(14)

The last term vanishes for q2 ≫ m2. For the x-integration, you need:
∫ 1

0

dx x(1 − x) log(x(1 − x)) = − 5

18
(15)

Show that the final result for the matrix element reads:

iΠµν(q) =
ie2

12π2
gµνq2

(

log

(

− q2

Λ2

)

− 5

3

)

(16)

Following the discussion of part (1) you find:

eR(q) =
e

1 − e2

12π2

(

log
(

− q2

Λ2

)

− 5
3

) (17)
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