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H10.1 Pions are not forever 1+2+1+2+2+4+3+3=18 points
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Figure 1: Adler–Bell–Jackiw anomaly graphs.

In a classical field theory with vanishing quark masses we have a chiral symmetry implying
that the axial current is conserved, ∂µj

5µ = 0. This symmetry forbids the neutral pion
to decay into two photons, π0 6→ γγ. However, experiment has shown that the favored
decay channel of the neutral pion is the one into two photons. Therefore we must go
beyond the classical level and we find that at the quantum level chiral symmetry is broken,
i.e. ∂µj5µ 6= 0. This situation in which a classical symmetry gets broken after quantization
is called an anomaly. In this exercise we want to explore the chiral anomaly and compute
the decay width of the neutral pion.

(a) Using the Feynman rules you have witnessed so far, write down the amplitude for
the process in fig. 1(a). Insert for the axial vector current γµγ5. Make sure you arrive
at

iΠµνλ = −i e2

∫

d4k

(2π)4
tr

[

γµγ5 6k− 6p2

(k − p2)2
γλ 6k

k2
γν 6k+ 6p1

(k + p1)2

]

. (1)

(b) At the classical level the matrix element of the divergence of the axial vector current
vanishes. Therefore we take the divergence of eq. (1) in momentum space (i. e. we
multiply with i qµ). Furthermore, use momentum conservation to arrive at

i qµ Πµνλ = e2

∫

d4k

(2π)4
tr

[

γ5 6k− 6p2

(k − p2)2
γλ 6k

k2
γν + γ5γλ 6k

k2
γν 6k+ 6p1

(k + p1)2

]

. (2)

Hint: 6a 6a = a2
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(c) As a next step we shift the integration variable in the first term of eq. (2) as k → k+p2.
Using the properties of the trace, verify

i qµ Πµνλ = e2

∫

d4k

(2π)4
tr

[

γ5 6k

k2
γλ 6k+ 6p2

(k + p2)2
γν − γ5 6k

k2
γν 6k+ 6p1

(k + p1)2
γλ

]

. (3)

As evident, eq. (3) is antisymmetric under the interchange of (p1, ν) and (p2, λ). Conse-
quently, the contribution from the second diagram in fig. 1(b) is precisely canceled and one
would expect the amplitude to vanish.
However! Since we have shifted the integration variable of an divergent integral there could
have appeared a finite remnant. Therefore, the shift in the integration variable we have
performed requires further treatment! To do so we use a procedure called dimensional reg-

ularization. The basic idea is to assume that the loop momentum k has higher dimensional
components while the external momenta p1 and p2 remain 4-dimensional. We introduce

k = k4 + kd−4 , (4)

with k4 being the 4D Minkowski part and kd−4 being the higher dimensional remnant.

(d) Using the the fact that γ5 commutes with γµ in the extra-dimensions (i. e. µ > 3)
show that the divergence of eq. (1) gets an additional contribution,

i qµ Πµνλ = e2

∫

d4k

(2π)4
tr

[

−2γ5 6kd−4
6k− 6p2

(k − p2)2
γλ 6k

k2
γν 6k+ 6p1

(k + p1)2

]

. (5)

Hint: Convince yourself that qµγ
µγ5 = (6k+ 6p2)γ

5 + γ5( 6k− 6p1) − 2γ5 6kd−4.

After the dimensional regularization the shift can be justified and thus the terms in eq. (3)
neatly cancel each other.

(e) Next we have to perform the Feynman trick:

1

ACB
=

∫ 1

0

dx

∫ x

0

dy
1

[xA + yB + (1 − x − y)C]3
. (6)

Show that the denominator becomes [(k − Ω)2 − ∆]
3

with Ω = xp2 − yp1 and
∆ = x(1 − x)p2

2 + y(1 − y)p2
1 + 2xy(p2 · p1).

(f) Perform the shift in the integration variable k → k + Ω. Now we look at the trace in
the numerator. Note that odd powers of k vanish. Argue that the terms proportional
to k4, p2

1 and p2
2 vanish and the 4-dimensional parts of k drop out. Write down the

remaining terms.
Hint: There are six of them.

(g) Integrate over the loop momentum. Then making use of the appropriate trace theo-
rem and integrating over the Feynman parameters, show that the divergence of the
amplitude is,

i qµ Πµνλ =
e2

8π2
ǫνλαβp2,αp1,β . (7)

Hint:
∫

d
4k

(2π)4
�kd−4�kd−4

(k2
−∆)3

= i

(4π)d/2

d−4
2

Γ(2−d/2)

Γ(3)∆2−d/2
.

Taking the limit d → 4 this integral becomes −i

2(4π)2
.
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Obviously eq. (7) is symmetric under the interchange of (p1, ν) and (p2, λ) and therefore
the second diagram in fig. 1(a) gives an equal contribution.
To obtain the amplitude for the decay π0 → 2γ from both diagrams we can use our result
eq. (7). We make the ansatz

i Π = i
e2

4π2

1

fπ
ε(i)∗

ν ε
(j)∗
λ ǫνλαβp2,αp1,β , (8)

where ε(i)∗ are the polarization vectors and fπ denotes the pion decay constant which
parameterizes the QCD effects.

(h) Finally, using the Hans–Josef Formula we can compute the width of the pion decay:

Γ(π0 → 2γ) =
1

2mπ

1

8π

1

2

∑

polarization
states

∣

∣Π(π0 → 2γ)
∣

∣

2
, (9)

where mπ denotes the mass of the neutral pion and the factor 1/2 is due to phase
space of identical particles. Useful data: mπ = 134.976 MeV and fπ = 93 MeV.
Compare your result to the experimentally measured value Γ(exp) = 7.93 eV and/or
the mean life-time τ (exp) = 8.4 × 10−17 s

Hint: Go to the rest frame of the pion and use momentum conservation and Lorentz

invariance to determine the form of p2,α and p1,β. Remember that the photon has two

polarization states which are orthogonal to its momentum. Recall: α = e2

4π
≃ 1

137
.
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