
Physikalisches Institut Exercise 7
Universität Bonn 26. November 2010
Theoretische Physik WS 10/11

Exercises on Theoretical Particle Physics
Prof. Dr. H.-P. Nilles

–Home Exercises–
Due 3. December 2010

H 7.1 Majorana spinors and the See–Saw mechanism 10 points

We write a four component Dirac spinor in the chiral representation as a composition of
two Weyl spinors

Ψ =

(
ψL

ψR

)
.

A Majorana spinor is a Dirac spinor Ψ with the following constraint

Ψc := CΨ
T

= Ψ , (1)

where C = iγ2γ0 is the charge conjugation operator.

(a) Show that (Ψc)c = Ψ. (0.5 points)

(b) What does eq. (1) imply for ψL and ψR and what is the physical meaning of this
condition? (1 point)

(c) The Lagrangian LD for a Dirac spinor has the form

LD = Ψ (iγµ∂µ) Ψ−mΨΨ ,

where the second term is called the Dirac mass term. Rewrite LD in ψL and ψR.
(1 point)

(d) Using the result of (b) rewrite the Lagrangian LM for a Majorana spinor in terms of
ψL/R

LM = Ψ (iγµ∂µ) Ψ− m

2
ΨΨ.

The second term is called the Majorana mass term. Why is the factor 1/2 included in
the mass term? (1 point)
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(e) Remember the projectors PL/R = 1/2(1∓ γ5). As you know PL/R project Ψ onto the
left/right handed part, respectively. We denote ΨL/R := PL/RΨ. Show that(

ΨL/R

)c
= (Ψc)R/L(

ΨL/R

)c (
ΨR/L

)c
= ΨR/LΨL/R

(1 point)

(f) The most general mass term for a Dirac spinor is the Dirac–Majorana mass term,

Lm = −1

2

[
2mDΨΨ +mLΨL(Ψc)R +mR(Ψc)LΨR

]
Show that this can be written in matrix form as

Lm = −1

2

(
ΨL (Ψc)L

)
M
(

(Ψc)R

ΨR

)
with

M =

(
mL mD

mD mR

)
being the neutrino mass matrix. (1 point)

(g) Argue that in the SM extended by right-handed neutrinos, mL must be zero and mD is
of the order of the electroweak symmetry breaking scale MW ∼ 100 GeV. We further
assume that mR is generated by some unspecified symmetry breaking mechanisms
occurring at high energies, i. e. mR ∼MGUT ∼ 1016 GeV. (1 point)

(h) In this setup, diagonalize M using an orthogonal matrix A

ATMA = diag(m1,m2).

Show that to the first non-vanishing order in the (small) parameter ρ := mD/mR that
the eigenvalues are m1 = −m2

D/mR and m2 = mR. Find the rotation matrix A to
the first order in ρ for the diagonalization. What does ρ � 1 imply for the mass
eigenstates? Insert the estimations done in (g) and compare the mass of the light
neutrino to actual experimental bounds. (3.5 points)

We see that by making one mass heavy the other one becomes very light. For this reason
setups of this kind are generically referred to as See-Saw mechanism.
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H 7.2 Neutrino oscillations 6 points

In analogy to the mixing of the quarks through weak interactions via the CKM matrix one
can imagine a similar situation with the leptons once the neutrinos get mass. Hence, let
us assume that there are n orthonormal flavor (interaction) eigenstates |να〉. These states
are transformed into n mass eigenstates νi via the unitary mixing matrix U ,

|να〉 = Uαi|νi〉 .

(a) Assuming that the mass eigenstates |νi〉 are stationary states and were emitted with
momentum p by a source at x = 0 at t = 0, what is the form of |νi(x, t)〉? (0.5 points)

(b) What is the relativistic Hamiltonian for a particle? For a highly relativistic particle we
have m� p. Expand the Hamiltonian to first non-vanishing order in m/p. (1 point)

(c) A neutrino detector is built at a distance L from a source producing neutrinos in an
eigenstate |να〉. Show that the amplitude of detecting a neutrino in an eigenstate |νβ〉
is

A(α→ β)(L) =
∑
i

U∗
βiUαi exp

{
i
m2
i

2

L

E

}
.

Hint: For a highly relativistic particle you can set v = 1(= c) and p ∼= E. (1.5 points)

(d) Obtain the transition probability P in terms of the differences of the mass squares
∆m2

ij := m2
i −m2

j . What is the probability of finding the original flavor? (1 point)

(e) Now assume that we have two flavors and one mixing angle θ. What is the form of
U? Compute P (α → β) and P (α → α) for this case. Under which condition can one
flavor completely rotate into another one? (2 points)
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