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Exercise 7.1: Differential Forms 12 Credits

Totally antisymmetric lower-index tensors are an important class of tensors, called differen-
tial forms. Given such a tensor Aµ1...µp

, antisymmetric in all its indices, the corresponding
p-form Ap is defined as

Ap =
1

p!
Aµ1...µp

dxµ1 ∧ dxµ2 ∧ · · ·dxµp .

Here the wedge product of the basis one-forms is antisymmetric, dxµ ∧ dxν = −dxν ∧ dxµ.
The wedge product extends to arbitrary forms,

Ap ∧ Bq =
1

p!

1

q!
Aµ1...µp

Bν1...νq
dxµ1 ∧ dxµ2 ∧ · · ·dxµp ∧ dxν1 ∧ dxµ2 ∧ · · ·dxνp

=
1

(p + q)!
(Ap ∧ Bq)µ1...µp+q

dxµ1 ∧ dxµ2 ∧ · · ·dxµp+q .

Hence the components of the product form are given by (the square brackets indicate
antisymmetrisation)

(Ap ∧ Bq)µ1...µp+q
=

(p + q)!

p!q!
A[µ1...µp

Bµp+1...µp+q] .

Clearly, the degree of a form cannot exceed the spacetime dimension.
One reason for the importance of forms is that they allow for a type of derivative which
does not require a connection, the exterior derivative d. It increases the degree of the form
and act as follows:

dAp = d

(

1

p!
Aµ1...µp

dxµ1 ∧ dxµ2 ∧ · · ·dxµp

)

=
1

p!
∂ρAµ1...µp

dxρ ∧ dxµ1 ∧ dxµ2 ∧ · · ·dxµp .

In other words, the components of the resulting (p + 1)-form are

(dAp)µ1...µp+1
= (p + 1) ∂[µ1

Aµ2...µp+1] .
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1. Verify that the result of the exterior derivative is indeed a tensor. Furthermore, show
that d2 = 0 and that the exterior derivative satisfies a Leibniz rule,

d (Ap ∧ Bq) = dAp ∧ Bq + (−1)p
Ap ∧ dBq .

(3 credits)

2. How many independent components does a p-form have in d spacetime dimensions?

Given a (Lorentzian) metric, we can assign to a p-form Ap a (d − p)-form (∗A)d−p

with components

(∗A)µ1...µd−p
=

1

p!

√
−g εµ1...µd

gµd−p+1ν1 . . . gµdνpAν1...νp

Here εµ1...µd
is the totally antisymmetric Levi-Civita symbol, ε012...d = 1, and g is

the determinant of the metric. Show that this is indeed a tensor. (It suffices to
show that

√
−g εµ1...µd

is a tensor, the so-called Levi-Civita tensor.) This operation
is called Hodge-∗. Compute the action of ∗∗. (2 credits)

3. Specialise to three-dimensional Euclidean space. Consider a scalar function φ(x)
and a vector field ~u(x) and express the usual operations grad, curl and div in form
language. Derive the well-known identities

(a) curl gradφ = 0,

(b) div curl ~u = 0,

(c) Let ~v be another vector field. Express the cross product ~u × ~v by forms.

(2 credits)

4. Show that the volume form V is V = ∗1. Show further that for two p-forms Ap and
Bp, we have A ∧ ∗B = B ∧ ∗A. (2 credits)

5. Consider Stokes’ theorem
∫

V

dω =

∫

∂V

ω ,

where ω is a d-form and V is a d + 1-dimensional domain. What is the meaning of
this theorem for d = 0, 1, 2? (3 credits)

Exercise 7.2: Tensor scalar duality and the Stückelberg mass 8 Credits

We first begin with a four dimensional theory of a massless two-form tensor field B2. The
action is given by

S =

∫

H3 ∧ ∗H3 ∼
∫

d4x HµνρH
µνρ ,

where H3 = dB2.

1. What is the gauge symmetry which leaves the action invariant? How many degrees
of freedom does B2 have? (2 credits)
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2. We can reparametrize the theory by regarding H3 as fundamental field. Then we have
to enforce dH3 = 0 using a Lagrange multiplier φ. Show that integrating out H3 leads
to an action for the massless scalar φ. What is the symmetry of φ? (3 credits)

3. We go back to the tensor theory and add a Chern–Simons coupling to a U(1) gauge
theory, i.e.

S =

∫

H3 ∧ ∗H3 + cB2 ∧ F2 + F2 ∧ ∗F2 (1)

with F2 = dA1. Repeat the above procedure to eliminate H3. Show that in order to
make S gauge invariant, φ has to transform as an axion. Show that you can gauge
away φ to obtain a massive vector boson theory. (3 credits)
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