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Exercise 9.1: Green—Schwarz terms from M-Theory 20 Credits

We compactify eleven dimensional SUGRA of a orbifold S'/Z, in the sence of Hotawa
Witten, i.e. such that gauge theories at the boundaries arise. We parametrize the circle by
¢ € [—m,m, i.e. ¢ ~ ¢+ 27 and the orbifold acts as ¢ — —¢ and has two fixed points at
¢ = 0, 7. We are interested in the topological Chern Simons action
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where C' is the three form fields and G = dC + .. .. In order to describe localisation in the
eleventh dimension we define on [—, 7] the forms

1() = sen(6) ~ £ e(6)= -2,
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1. Show that
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Show furthermore that d;¢;€;, = ééijéikék Hint: Use the regularization
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e3 similarly and 67 == 3 (de + 42). (8 credits)
2. Show that invariance of (1) under the Z, implies that C'4pc are odd whereas Cap 11
are even components of C5. A, B,C' =0,...,9. Hint: What terms does (1) contain?

How do the derivatives transform? (2 credits)



. From Horava Witten we know that
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The two-dimensional descent equations read
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where ¢ denotes infinitesimal gauge- and local Lorentz transformations with param-
eters A9, A, and
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wi = @ (tr(AgdAi) — %tr(ALdQ,-)) :

The transformations act on the gauge- and spin connection as A — (1 + A9)(A —
dA9)(1—A9) and Q — (1+AL)(Q—dAL)(1—AL). The curvatures are F = dA+ANA
and R =dQ+ QA Q. We drop the ¢ dependence in A, F,Q, R, A. Show that (3) are
indeed fulfilled. (4 credits)

. Show that (2) is solved by
b b
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where b is a (so far) free parameter. (2 credits)

. Show that invariance of G implies that C' transforms as
b

with some two—form Bj. (2 credits)

. Since C'ape = 0, it must in particular be gauge invariant. Show that this is guaran-
teed by By = 723", cw}. (2 credits)

. Now since G is globally well-defined, dG is exact and we can use Stokes theorem.
First let C5 = C4 x S* where Cy is a closed (= no boundary) cycle in M, and St is
the 11 dimension. Integrate dG over Cs and use (2) to show that

/ Z I, =0. (4)
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(2 credits)

. Now let C5 = Cy x I where I = [¢y, ¢o] with —7 < ¢ < 0 < ¢o < 7. Show that now
integration over Cs and Stokes theorem yield

(1—5)/1471:0.
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(3 credits)



