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H 3.1 Representations of su(2) 1+1.5+1+1+1+1.5+0.5+1.5+2=11 points

A Lie algebra g is a real vector space together with a smooth map [·, ·] : g×g→ g satisfying
the following conditions:

(i) The map is bilinear.

(ii) The map is skew-symmetric: [a, b] = −[b, a] for a, b ∈ g.

(iii) It fulfills the Jacobi identity: [a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0 for a, b, c ∈ g.

A representation ρ of a Lie algebra g on a vector space V is a linear map ρ : g→ End(V )
which is an algebra homomorphism, i. e. ρ([a, b]) = [ρ(a), ρ(b)]. The dimension of V is
called the dimension of the representation: dim(ρ) := dim(V ).

If there is a vector space {0} 6= W $ V such that ρ(W ) ⊂ W , the representation is
called reducible and W is called the invariant subspace. If such W does not exist the
representation is called irreducible; i. e. a representation is irreducible if and only if V is
the only invariant subspace itself. In this exercise we will focus on the algebra su(2).

(a) For G ∈ SU(2) we can write G = ei g with g ∈ su(2). The group SU(2) is the set of all
2-dimensional unitary matrices with determinant 1. Show that the corresponding Lie
algebra su(2) is the set of all traceless hermitian matrices.
Hint: detA = exp Tr logA.

(b) Choose the basis

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

for the traceless hermitian matrices with the commutation relation [σi, σj] = 2iεijkσk

and define

J3 =
1

2
σ3, J+ =

1

2
(σ1 + iσ2) , J− =

1

2
(σ1 − iσ2) .

Verify the commutation relations

[J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 2J3.

In the following let us consider all irreducible, finite-dimensional representations
of su(2) on a vector space V , ρ(Ji) ∈ End(V ), i = 3,+,−. We will proceed stepwise
in order to classify these representations and to find out which dim(V ) are allowed.
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(c) Since J3 is diagonal, ρ(J3) can also be chosen to be diagonal. Therefore V can be
decomposed into eigenspaces of ρ(J3),

V =
⊕

Vα ,

where α labels the eigenvalues of ρ(J3), i. e.

(ρ(J3)) v = αv, v ∈ Vα , α ∈ C .

Show that J+(v) ∈ Vα+1 and J−(v) ∈ Vα−1.

Hint: For convenience use the shorthand notation Ji for ρ(Ji).

(d) Prove that all complex eigenvalues α which appear in the above decomposition differ
from one another by 1.

Hint: Choose an arbitrary α0 ∈ C from the decomposition and prove that
⊕

k∈Z Vα0+k ⊂ V
is indeed equal to V using the irreducibility of the representation.

(e) Argue that there is a k ∈ N for which Vα0+k 6= {0} and Vα0+k+1 = {0}. Define
n := α0 + k. Note that up to now we only know that n ∈ C. Draw a diagram by
writing the vector spaces Vn−2, Vn−1 and Vn in a row and indicating the action J3, J+

and J− on these vector spaces by arrows. The eigenvalue n is called highest weight and
a vector v ∈ Vn is called highest weight vector. Why?

(f) Choose an arbitrary vector v ∈ Vn (highest weight vector). Prove that the vectors v,
J−v, J2

−v, . . . span V .

Hint: Show that the vector space spanned by these vectors is invariant under the action
of J3, J+ and J− and use the irreducibility of the representation.

(g) Argue that all eigenspaces Vα are 1-dimensional.

(h) Prove that n is a non-negative integer or half integer and that

V = V−n ⊗ . . .⊗ Vn .

Complement the diagram drawn in part (e). Which is the dimension of the represen-
tation?

Hint: The representation is finite dimensional, so there exists m ∈ N for which
Jm−1
− v 6= 0 and Jm− v = 0. Evaluate J+J

m
− v.

(i) Consider the tensor product of a 2-dimensional and a 3-dimensional irreducible repre-
sentations of su(2):

V = V (2) ⊗ V (3) .

Show that the resulting representation V is reducible and that it can be decomposed
into a 2-dim. and a 4-dim. irreducible representation. Shorthand: 2⊗ 3 = 2⊕ 4.

Hint: The action of a Lie algebra on the tensor product of two representations is given
by: X(v ⊗ w) = Xv ⊗ w + v ⊗ Xw, i. e. the eigenvalue of J3 on V is the sum of
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the eigenvalues of J3 on V (2) and V (3). Draw the diagrams of the eigenvalues(with
multiplicities). Then use the fact that the eigenspaces of irreducible representations
are 1-dimensional.

H 3.2 Non-Abelian gauge symmetry 1+1+1+1.5+1+1+1.5+1=9 points

(a) A Lie algebra is defined via the commutation relations of the algebra elements[
T i, T j

]
= i f ijkT k .

The f ijk are called structure constants. Show that the structure constants, viewed as
matrices (T i)kj := if ijk, furnish a representation of the algebra. This representation is
called the adjoint representation.
Hint: Use the Jacobi identity.

(b) Let us take a free Dirac field Lagrangian

L0 = Ψ̄ (iγµ∂µ) Ψ ,

with Ψ transforming under the global SU(N) as

Ψ 7−→ Ψ′ = UΨ , U = exp (iαa T a) , U †U = 1 .

Show that L0 is invariant under this transformation.

(c) As a next step we introduce local SU(N) transformations.

Ψ 7−→ Ψ′ = U(x)Ψ , U(x) = exp (iαa(x)T a) , U †(x)U(x) = 1 .

Show that the transformation of L0 now leads to an extra term

Ψ̄U †(x)iγµ (∂µU(x)) Ψ .

Thus L0 is not invariant under local SU(N) transformations.

(d) Therefore, we want to gauge the symmetry : We introduce a (gauge) covariant deriva-
tive by minimal coupling to a gauge field and identify the gauge field’s transformation
properties. The covariant derivative is defined via the requirement that DµΨ trans-
forms in the same way as Ψ itself:

DµΨ :=
(
∂µ + igAaµT

a
)

Ψ ,

demanding

DµΨ 7−→ (DµΨ)′ = U(x) (DµΨ) .

Show that this is equivalent to demanding that the gauge boson transforms as

Aaµ 7−→
(
Aaµ
)′

= Aaµ − fabcαbAcµ −
1

g
∂µα

a .

Hint: Expand the exponential at the appropriate place in the calculation.
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(e) Show that the following Lagrangian is gauge invariant

L = Ψ̄ (iγµDµ) Ψ .

(f) Define the field strength tensor F through

i g
(
F a
µνT

a
)

Ψ := (DµDν −DνDµ) Ψ

and find for its components

F a
µν = ∂µA

a
ν − ∂νAaµ − g fabcAbµAcν .

(g) Note that the covariant derivative was constructed such that D′µU(x) = U(x)Dµ holds.
Therefore

[(DµDν −DνDµ) Ψ]′ = U(x) (DµDν −DνDµ) Ψ

is valid. Derive the transformation property of the field strength tensor

Fµν 7−→ (Fµν)
′ = U Fµν U

−1 ,

F a
µν 7−→

(
F a
µν

)′
= F a

µν − fabcαbF c
µν ,

where Fµν = F a
µνT

a. Because of the last equation the field strength tensor itself is not
gauge invariant.

(h) Verify that the product

tr(FµνF
µν)

is gauge invariant. The trace is taken over the matrix entries of the generators.

As this term is gauge invariant, we have to add it to the Lagrangian. It gives rise to self
couplings of the gauge bosons. The final result for the gauge invariant Dirac Lagrangian is

L = Ψ̄ (iγµDµ) Ψ− 1

2
tr (FµνF

µν) .
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