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H7.1 More on the CKM matrix 1.5+1.5+1.5+2+1.5+1=9 points

In this exercise we focus more on the precise structure of the CKM matrix and investigate
its physical content. Let Mij = v√

2
Gij be the mass matrix in an N flavour model after

spontaneous symmetry breaking. We assume it to have full rank.

(a) Show that MM † is Hermitean. Thus it can be diagonalized by a unitary matrix S, i.e.

S†MM †S = M2
d = diag(m2

1, . . . , m
2
N) ,

where for a physically stable vacuum we choose mi > 0. We can rewrite this as

MM † = SM2
dS† .

show that the right hand side of this equation has N more free parameters than a
Hermitean matrix (like MM †). Show that this leaves us the freedom to transform
S → SF with F = diag

(

eiφ1, . . . , eiφN

)

.

(b) Define a Hermitean matrix by H = SMdS
†. Show that V := H−1M is unitary.

(c) Show that this allows us to write M = SMdT
† with T = V †S also unitary. Compare

again the number of parameters of the general matrix M to the number of parameters
in SMdT

†. Identify the same freedom in choice of the matrices S, T given by the
matrix F .

(d) Remember that the CKM matrix is defined by VCKM = U †
uUd where the biunitary

transformations acting on the quark mass matrices are Mi → V †
i MiUi for i = u, d, see

last sheet. Thus it is a unitary matrix. Show that using the freedom to choose Fu and
Fd, VCKM has (N − 1)2 physical parameters. Hint: Identify a one-parameter subgroup

within the Fu and Fd which does not change VCKM.

(e) In the framework of U(N) these parameters can be interpreted as mixing angles which
are the same as in SO(N) and complex phases. Show that the amount of complex
phases for N generations is (N − 1)(N − 2)/2.

(f) Physical complex phases in the CKM matrix lead to CP violating processes. What is
the minimal amount of families required to observe CP violation as was done in K0

decays?
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H7.2 Electron–Muon scattering 0.5+1.5+1.5+1.5+1.5+3.+1.5=11 points
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In perturbative quantum field theory Feynman Graphs are used to calculate amplitudes
of interacting processes and thus to give formulæ for cross-sections and decay widths.
A Feynman graph contains vertices at which particles are destroyed and created, prop-

agators connecting those vertices, and external lines describing in- and out-going particles.

We present the Feynman rules to calculate the amplitude −iM in QED.

(i) An arrow in the direction of time denotes a particle, an arrow in the opposite direction denotes an
antiparticle. Assign a label i to each external particle. Assign momenta to each particle (including the
internal lines) and indicate them by momentum-arrows beside the particle lines.

(ii) For the following rules, proceed “backwards” with respect to the particle arrow for each fermion line.
I.e. for a particle, proceeding backwards means “opposite to the direction of time”. For an antiparticle,
proceeding backwards means “in the direction of time”.

(iii) Write a factor u(pi) (v(pi)) for every external (anti-)particle line which arrow points towards a vertex and
u(pi) (v(pi)) for lines that point away from the vertex.

(iv) The contribution from vertices and internal lines (propagators) is summarized in eqs. (F1)–(F3). The
indices of the γ’s are contracted with the ηµν of the photon proparator.

(v) Use 4-momentum conservation at the vertices to eliminate the internal momenta.

In the lab frame where the particle B is initially at rest and is assumed to be such heavy that recoil effects are
negligible, the differential cross section for the process AB → AB is given by eq. (F4).

(a) Using the Feynman rules for QED, derive the electron-muon scattering amplitude:

M = −
e2

(p1 − p3)
2

[

u(p3)γ
µu(p1)

][

u(p4)γµu(p2)
]

.

(b) To calculate the cross section, we need to know |M|2. Show that

|M|2 =
e4

(p1 − p3)
4

[

u(p3)γ
µu(p1)u(p1)γ

νu(p3)
][

u(p4)γµu(p2)u(p2)γνu(p4)
]

. (1)
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(c) In a typical experiment, the particle beam is unpolarized and the detector simply
counts the number of particles scattered in a given direction. Therefore, we have to
average over initial spins and sum over final spins. The averaging over the initial spins
is easy: It contributes a factor of 1/2 for each sum. Using the completeness relation for
Dirac spinors

∑

s=1,2 u(s)(p)u(s)(p) = �p+m, where �p = pµγ
µ, show that the summation

over spins for the first factor in eq. (1) can be written as

∑

s1,s3

u(s3)(p3)γ
µu(s1)(p1)u

(s1)(p1)γ
νu(s3)(p3) = tr

[

(�p3 + me) γµ (�p1 + me) γν
]

.

Derive the analogous result for the second factor in (1). The final result reads

1

4

∑

s1, s2
s3, s4

|M|2 = e4
tr

[

(�p3 + me) γµ (�p1 + me) γν
]

tr
[

(�p4 + mµ) γµ (�p2 + mµ) γν

]

4 (p1 − p3)
4 . (2)

Note that we have reduced the problem of calculating the cross section to matrix
multiplication and taking the trace.

(d) Consider the first trace in eq. (2). Using the identities proved in H1.1, derive

tr
[

(�p3 + m) γµ (�p1 + m) γν
]

= 4
(

pµ
1p

ν
3 + pν

1p
µ
3 − (p1 · p3)η

µν + m2
eη

µν
)

,

and similarly for the second trace.

(e) Substitute your results in eq. (2), expand the brackets and contract the indices to show
that

〈|M|2〉 = 8e4 (p1 ·p2) (p3 ·p4) + (p1 ·p4) (p3 ·p2) − (p1 ·p3) m2
µ − (p2 ·p4) m2

e + 2m2
µm2

e

(p1 − p3)
4 .

(f) So far everything is written covariantly and is independent of the special coordinate
frame. To make contact with measurements, we specify to the rest frame of the muon
and make the approximation mµ ≫ me. Denote by p := |~p1| the absolute value of the
initial electron momentum. Denote by θ the angle between ~p1 and ~p3.
Draw 2 diagrams, one before the scattering process and one after. Write the 4-momenta
under the respective diagrams, taking into account the approximation we have made.
Show that in this approximation conservation of energy/momentum gives |~p3| = |~p1| = p.
Prove the following identities.

(p1 − p3)
2 = −4p2 sin2 θ

2
, p1 · p3 = m2

e + 2p2 sin2 θ

2
,

(p1 ·p2) (p3 ·p4) = E2m2
µ , p2 · p4 = m2

µ .

(g) Insert the above results into eq. (F4) for the cross section to obtain the Mott formula

dσ

dΩ
=

1

64π2

e4

p4 sin4 θ/2

[

m2
e + p2 cos2 θ/2

]

.

In the low-energy limit this leads to the well-known Rutherford formula.
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