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12. Electron-Positron annihilation Part II (4 credits)

(a) Consider the kinematic in the center-of-mass frame, use mµ � me and show
that the result of exercise 11 can be rewritten as
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if E is the energy of the incoming electron and θ the angle between the incoming
electron and outgoing muon.

(1 credit)

(b) The differential cross section for a process of two incoming and two outgoing
particles can be derived using
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with s = (p1 + p2)
2. Use part (a) to derive the differential cross section.

(1 credit)

(c) Derive the total cross section σ. What would be the result if M is energy
independent?

(2 credits)

13. Electron-Hadron scattering (16 credits)

(a) Use the Dirac equation to derive the Gordon decomposition
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(2 credits)

(b) We want to consider the scattering at a spin 1/2 hadron with mass M and charge
eH . To take care of the inner structure of the hadron we generalize

u(p1)γµu(p2)→ u(p1)Γµ(p1, p2)u(p2).

Show that for a parity invariant force the most general ansatz is

Γµ(p1, p2) = γµA+ (p1 + p2)µB + (p1 − p2)µC.
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Use the conservation of the current

qµu(p1)Γµ(p1, p2)u(p2) = 0, qµ = (p1 − p2)µ

to determine C. Use then part (a) to derive
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with the so-called form factors F1(q
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(2 credits)

(c) Write down the Feynman graph for the scattering of an electron at a spin 1/2
hadron in QED. According to part (b) use ieHΓµ(p3, p4) at the hadron vertex
instead of ieγµ.

(1 credit)

(d) Show that the trace over the hadron current may be written as
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(1 credit)

(e) Assume that the hadrons as well as the electrons are not polarized and use
further E � me which means one can neglect the electron mass. E labels the
electron energy. Consider further the rest frame of the hadron where θ is defined
like in exercise 10. Show that the differential cross section is given by
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This result is known as the Rosenbluth formula.

(10 credits)
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