Exercises on Theoretical Particle Physics I Prof. Dr. H.P. Nilles

Due 19.12.2016

15. The $\mathfrak{su}(N)$ Lie algebra

(a) Consider the space of all $N \times N$ matrices. A possible basis is given by e_{ab} with components $(e_{ab})_{ij} = \delta_{ai}\delta_{bj}$. Show

$$e_{ab}e_{cd} = e_{ad}\delta_{bc}, \qquad [e_{ab}, e_{cd}] = e_{ad}\delta_{bc} - e_{cb}\delta_{ad}.$$

$$(1 \ credit)$$

(b) We are interested in the Lie algebra $\mathfrak{su}(N)$ which means we can think of $N \times N$ matrices which are traceless. We will use e_{ab} with $a \neq b$ and traceless elements like

$$H_i = \sum_j \lambda_{ij} e_{jj}$$

which form a subalgebra \mathfrak{h} of $\mathfrak{su}(N)$ which is called Cartan subalgebra. Its dimension is called the rank of the algebra and equals N-1 in our case. Show

$$[H_i, H_j] = 0.$$

We can define the so-called adjoint of H_i by ad $H_i(e_{ab}) = [H_i, e_{ab}]$. Show that

ad
$$H_i(e_{ab}) = [H_i, e_{ab}] = (\lambda_{ia} - \lambda_{ib})e_{ab}$$

 $(1 \ credit)$

(c) Let us define

$$\alpha_{e_{ab}}(H_i) = \lambda_{ia} - \lambda_{ib}, \qquad \alpha_j(H_i) = \lambda_{ij} - \lambda_{ij+1}.$$

We call $\alpha_{e_{ab}}(H_i)$ roots. Show that all $\alpha_j(H_i)$ span a basis of the root space.

 $(1 \ credit)$

(d) Calculate the symmetric bilinear form $\mathcal{K}(H_i, H_j)$ where we define

$$\mathcal{K}(H_i, H_j) = \operatorname{tr}(\operatorname{ad}(H_i) \operatorname{ad}(H_j)).$$

 $(1 \ credit)$

 $(9 \ credits)$

(e) It is possible to define a unique element H_{α_i} such that

$$\alpha_i(H_j) = \mathcal{K}(H_{\alpha_i}, H_j) \quad \forall j.$$

Use your result from part (d) to identify H_{α_i} .

 $(2 \ credits)$

(f) Derive the Cartan matrix which is defined as

$$A_{ij} = 2 \frac{\langle \alpha_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle}, \qquad \langle \alpha_i, \alpha_j \rangle = \mathcal{K}(H_{\alpha_i}, H_{\alpha_j}).$$

 $(3 \ credits)$

16. More about $\mathfrak{su}(3)$

 $(11 \ credits)$

(a) The Gell-Mann matrices are defined as

$$\lambda_{1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{2} = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \lambda_{3} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}, \quad \lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$
$$\lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}.$$

Express the step operators

$$T_{\pm} = \frac{1}{2}(\lambda_1 \pm i\lambda_2), \quad V_{\pm} = \frac{1}{2}(\lambda_4 \pm i\lambda_5), \quad T_{\pm} = \frac{1}{2}(\lambda_6 \pm i\lambda_7)$$

in terms of e_{ab} .

$$(1 \ credit)$$

(b) $H_1 = \frac{1}{2\lambda_3}$ and $H_2 = \frac{1}{2\lambda_8}$ may be the generators of the Cartan subalgebra of $\mathfrak{su}(3)$. Express them with e_{ab} . Remember the definition of H_i from part (b) of exercise 15 and determine the coefficients λ_{ij} .

 $(1 \ credit)$

(c) It is possible to use $\alpha_1 = \alpha_{e_{12}}$ and $\alpha_2 = \alpha_{e_{23}}$ as basis of the root space. Use this basis to calculate the Cartan matrix with the result from part (b). Compare your result with the general form derived in part (f) of exercise 15 and check consistency.

 $(1 \ credit)$

(d) Instead of working with the adjoint representation we now consider the so-called fundamental representation denoted by **3** in the case of $\mathfrak{su}(3)$. Let us define the so-called weight vectors

$$\phi_1 = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \qquad \phi_2 = \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \qquad \phi_3 = \begin{pmatrix} 0\\0\\1 \end{pmatrix}.$$

Use $H = aH_1 + bH_2$ and the eigenvalue equation $H\phi_i = M_i\phi_i$ to determine the so-called weights M_i . Express M_i in terms of the roots like $M_i = c_{i1}\alpha_1 + c_{i2}\alpha_2$ and derive the coefficients c_{ij} . We define $M_i > M_j$ by the requirement $M_i - M_j > 0$. A weight is called the highest weight Λ if $\Lambda > M_i \quad \forall M_i \neq \Lambda$. Determine Λ .

 $(3 \ credits)$

(e) Compute the Dynkin labels of a weight M_i via

$$\Lambda_{ij} = 2 \frac{\langle M_i, \alpha_j \rangle}{\langle \alpha_j, \alpha_j \rangle}$$

for all weights in **3**.

 $(2 \ credits)$

- (f) It is also possible to construct all weights via the following rules
 - (i) Start with the weight with Dynkin labels Λ_{ij} with non-negative entries, representing the highest weight.
 - (ii) For each non-negative entry Λ_{ij} substract the *j*-th row of the Cartan matrix Λ_{ij} times.
 - (iii) Repeat the last step for all weights until all Dynkin labels are non-positive.

This procedure is usually graphically depicted. In the case of the fundamental representation $\bf 3$ we find

in agreement with part (e). Repeat this analysis for (0, 1) which is usually denoted by $\overline{\mathbf{3}}$ and for (1, 1) which is the adjoint representation.

 $(2 \ credits)$