
Advanced Quantum Theory (WS 24/25)
Homework no. 11 (December 18, 2024): Christmas edition!
Please hand in your solution by Monday, January 6!

1 Totally (Anti–)Symmetric N−Particle State

We saw in class that

Ŝ±|i1, i2, . . . iN ⟩ = 1√
N !

∑
P̂

(−1)P P̂|i1, i2, . . . iN ⟩ (1)

is a totally (anti–)symmetric N−particle state, if |i1, i2, . . . iN ⟩ = |i1⟩1|i2⟩2 . . . |iN ⟩N is a prod-
uct of one–particle states, in which particle no. α is in state |iα⟩, for α = 1, 2, . . . , N .

1. As a warm-up exercise, explicitly construct the three–particle states Ŝ±|3, 1, 2⟩ =
Ŝ±|3⟩1|1⟩2|2⟩3, i.e. starting from a state where particle 1 is in state number 3, par-
ticle 2 is in state 1, and particle 3 is in state 2. What happens if one instead starts
from the state |1⟩1|3⟩2|2⟩3? What happens if the single–particle states |1⟩ and |2⟩ are
identical, |1⟩ = |2⟩? What happens if all three states are identical, |1⟩ = |2⟩ = |3⟩? [5P]

2. Show that the squared norm of the totally symmetric N−particle state is given by∣∣∣∣∣∣Ŝ+|i1, i2, . . . iN ⟩
∣∣∣∣∣∣2 = n1!n2! . . . nn! (2)

where ni is the number of particles in state |i⟩, with
∑n

i=1 ni = N . Assume that the
single–particle states are normalized, ⟨i|k⟩ = δik. Hint: Use the fact that there are n!
permutations of n objects, and carefully distinguish between the permutations in Ŝ+
that do not change anything (since they exchange identical states |i⟩) and permutations
that do change something. How many different permutations of the latter kind are there
altogether? [5P]

2 Two–Particle Operators in Second Quantization

Consider an operator F̂ that can be written as a sum of two–particle operators f̂ :

F̂ =
1

2

∑
α ̸=β

f̂(x⃗α, x⃗β) . (3)

Here α, β label identical particles.

1. Show that F̂ can be written as

F̂ =
1

2

∑
α ̸=β

∑
i,j,k,l

⟨i, j|f̂ |k, l⟩ |i⟩α|j⟩β⟨k|α⟨l|β , (4)

where

⟨i, j|f̂ |k, l⟩ =
∫
d3x d3y ψ∗

i (x⃗)ψ
∗
j (y⃗)f̂(x⃗, y⃗)ψk(x⃗)ψl(y⃗) . (5)
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Here |i⟩α again means that particle α is in the single–particle state |i⟩, etc. Hint:
Compute the matrix element of F̂ between two–particle states that can be written as
products of single–particle states; this is sufficient, since all two–particle states can be
written as linear superpositions of such products. [2P]

2. Now assume that the particles in question are fermions (the first part of this problem
holds equally for bosons and fermions). Show that F̂ can be written in terms of fermionic
creation and annihilation operators:

F̂ =
1

2

∑
i,j,k,l

⟨i, j|f̂ |k, l⟩ b̂†i b̂
†
j b̂lb̂k . (6)

Hint: First, show that∑
P

(−1)P P̂|i1⟩1|i2⟩2 . . . |iN ⟩N = (−1)
∑

k<j nk
∑
α

(−1)α−1|j⟩α
∑
P

(−1)P P̂|i1⟩1|i2⟩2 . . . |iN−1⟩N−1 ,

where on the rhs the permutation is only over N − 1 elements, and it has been assumed
that one of the original |iα⟩ = |j⟩. Following the corresponding derivation for bosonic
operators shown in class, use this relation to prove∑

α

|i⟩α⟨j|α = b̂†i b̂j , (7)

which in turn can be used to prove eq.(6). [5P]

3 Field Operators in Momentum Space

In this homework we repeat the construction of the Hamiltonian in terms of field operators,
done in class for coordinate space operators, for operators defined in momentum space.

We work in a cuboid volume
Vo = LxLyLz , (8)

hence the normalized eigenstates with fixed momentum ℏk⃗ are

ϕ
k⃗
(x⃗) =

1√
Vo

eik⃗·x⃗ . (9)

We impose periodic boundary conditions,

ϕ
k⃗
(x, y, z) = ϕ

k⃗
(x+ Lx, y, z) = ϕ

k⃗
(x, y + Ly, z) = ϕ

k⃗
(x, y, z + Lz) . (10)

1. Show that eq.(10) requires k⃗ to be quantized, i.e.

k⃗ = 2π

(
nx
Lx
,
ny
Ly
,
nz
Lz

)
, (11)

where nx, ny, nz are arbitrary integers. [1P]
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2. Show that therefore the states ϕ
k⃗
are orthonormal,∫

Vo

d3x ϕ∗
k⃗
(x⃗)ϕ

k⃗′(x⃗
′) = δnx,n′

x
δny ,n′

y
δnz ,n′

z
≡ δ

k⃗,⃗k′ . (12)

[1P]

3. Let â†
k⃗
be the generators that create a single boson with wave vector k⃗. (The final result

also holds for fermions, with commuting â
k⃗
replaced by anticommuting b̂

k⃗
as usual.)

In order to express the Hamiltonian through these operators, we need three matrix
elements. First, show that

⟨k⃗′|T̂ |⃗k⟩ = ℏ2

2m
k⃗2δ

k⃗,⃗k′ , (13)

where T̂ is the operator of kinetic energy, and m is the mass of the particle under
consideration. [2P]

4. Next, show that for arbitrary external potential U(x⃗),

⟨k⃗′|U |⃗k⟩ = 1

Vo
U
k⃗′−k⃗

; (14)

the expression on the right is the Fourier transform of U with respect to the (discrete!)
wave vector k⃗′ − k⃗,

Uq⃗ =

∫
Vo

d3xU(x⃗)e−iq⃗·x⃗ . (15)

[1P]

5. Similarly, writing the two–particle interaction potential in terms of its Fourier compo-
nents as

V (x⃗− x⃗′) =
1

Vo

∑
q⃗

Vq⃗ e
iq⃗·(x⃗−x⃗′) , (16)

show that

⟨p⃗′, k⃗′|V (x⃗− x⃗′)|p⃗, k⃗⟩ = 1

Vo

∑
q⃗

Vq⃗ δq⃗,p⃗′−p⃗ δq⃗,⃗k−k⃗′ . (17)

[3P]

6. Finally, putting everything together, show that the Hamiltonian consisting of the sum of
kinetic energy, external potential energy U and two–particle potential V , can be written
as

Ĥ =
∑
k⃗

(ℏk⃗)2

2m
â†
k⃗
â
k⃗
+

1

Vo

∑
k⃗, k⃗′

U
k⃗−k⃗′ â

†
k⃗′
â
k⃗
+

1

2Vo

∑
k⃗, p⃗, q⃗

Vq⃗ â
†
q⃗+p⃗ â

†
k⃗−q⃗

â
k⃗
âp⃗ . (18)

Interpret the interaction terms. Why are all combinations of k⃗ and k⃗′ allowed in the
second term, whereas only specific combinations of wave vectors are allowed in the last
term? [5P]

Merry Christmas and Happy New Year!
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