
Advanced Quantum Theory (WS 24/25)
Homework no. 2 (October 14, 2024)

To be handed in by Sunday, October 20!

1 Canonical Transformations and Classical Trajectories

In classical Hamiltonian mechanics, a canonical transformation can be generated by a function
g(qi, pi), where the qi are the generalized coordinates and the pi the canonically conjugated mo-
menta. A given function g generates an infinitesimal transformation

qi → q̄i = qi + δqi = qi + ε
∂g

∂pi
, pi → p̄i = pi + δpi = pi − ε

∂g

∂qi
, (1)

where |ε| � 1 is an otherwise arbitrary constant.
Here we want to treat eq.(1) as an active transformation, which connects two different points

(qi, pi) and (q̄i, p̄i) in phase space. The system under consideration, described by the Hamilton
function H, is invariant under this transformation iff the Poisson bracket of g and H vanishes,
{g,H} = 0.

1. Show that if (qi(t), pi(t)) describes a valid trajectory (i.e. satisfies the equations of mo-
tion), and {g,H} = 0, then the transformation (1) generates another valid trajectory, i.e.
(q̄i(t), p̄i(t)) is another valid trajectory. [4P]

2. Now consider the simple case of a single particle. Convince yourself that finite transforma-
tions of one of the Cartesian coordinates, xk → x̄k = xk + δ with arbitrary δ, generate valid
trajectories (x̄i(t), pi(t)) given a valid trajectory (xi(t), pi(t)), if this transformation leaves
the Hamilton function invariant. Hint: What is the generator of this transformation? What
does invariance under this transformation imply for the Hamilton function? [3P]

2 Canonical Transformation in Quantum Mechanics

We saw in class that the generating function g of a canonical transformation in classical mechanics
defines a unitary quantum mechanical operator

Ûg(ξ) = exp (−iξĝ/~) , (2)

so that a finite active transformation can be described by

ψ(qi, t)→ ψ̄(qi, t) = Ûg(ξ)ψ(qi, t) . (3)

Here ψ is the wave function of the system under consideration, the qi are the generalized coordi-
nates, and ξ is an arbitrary real constant.

1. The transformation (3) can be made a bit more explicit by expressing the wave function in
terms of eigenfunctions of the hermitean operator ĝ,

ψ(qi, t) =
∑
n

cn(t)ψn(qi) , (4)

with ĝψn = gnψn. The transformed wave function ψ̄(qi, t) can be expressed analogously,
with expansion coefficients c̄n(t). How are the c̄n(t) related to the original cn(t)? [3P]

2. Now consider a single particle system, and g = Lz, the z component of orbital angular
momentum. As shown in class, this generates rotations around the z−axis. Prove this result
in the formalism of eq.(4). Hint: Use the explicit form of the eigenfunctions of L̂z. [3P]
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3. Now consider a single particle system, and g = L2, the square of the orbital angular mo-
mentum. Consider three cases: (i) The wave function is an eigenfunction of L̂2 and L̂z with
fixed quantum numbers l and m; (ii) the wave function is a superposition of eigenfunctions
of L̂2 and L̂z, with fixed l but different values of m; (iii) the wave function is a superposition
of eigenfunctions of L̂2 and L̂z, where both l and m take different values. In which of these
three cases does the active transformation ψ → ÛL2(ξ)ψ corresponds to a physical change?
Hint: Recall that the overall phase of the wave function has no physical significance. [3P]

3 Gauge Invariance in Classical Electrodynamics

Classical electrodynamics can be formulated in terms of the electric field ~E and the magnetic field
~B, or equivalently in terms of the scalar potential U and the vector potential ~A. The two sets of
quantities are related by

~B(~x, t) = ~∇× ~A(~x, t) ; ~E(~x, t) = −~∇U(~x, t)− ∂ ~A(~x, t)

∂t
. (5)

A gauge transformation is defined by a real function λ(~x, t), such that

~A(~x, t)→ ~A(~x, t) + ~∇λ(~x, t) ; U(~x, t)→ U(~x, t)− ∂λ(~x, t)

∂t
. (6)

Note that both ~A and U have to be transformed simultaneously. We are using SI units in this
problem.

1. Show that the gauge transformation (6) leaves the fields ~B, ~E defined in eq.(5) unchanged.
This is the basis of gauge invariance. [3P]

2. Show that the homogeneous (source–independent) Maxwell equations,

~∇ · ~B(~x, t) = 0 ; ~∇× ~E(~x, t) = −∂B(~x, t)

∂t
, (7)

are satisfied automatically if the fields are expressed as in (5). [4P]

3. The “Lorenz gauge” is defined by

~∇ · ~A(~x, t) = −µ0ε0
∂U(~x, t)

∂t
. (8)

Show that this decouples the two inhomogeneous Maxwell equations,

~∇ · ~E(~x, t) = ρ(~x, t)/ε0 ; ~∇× ~B(~x, t) = µ0
~j(~x, t) + µ0ε0

∂ ~E(~x, t)

∂t
, (9)

when the fields are expressed in terms of the potentials; here the charge density ρ and the
current density ~j are sources of the fields. [4P]

4. The Lagrange function of classical electrodynamics is given by

L =

∫
d3x

[
ε0
2
~E · ~E − 1

2µ0

~B · ~B − ρU +~j · ~A
]
. (10)

Show that the integrand of L (often called the Lagrange density) is not invariant under a
gauge transformation (6), if the sources ρ and ~j are assumed to be gauge invariant. However,
show that the action S is gauge invariant, under the usual assumption that surface terms
can be ignored. Hint: Use the fact that the current is conserved! [5P]
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